Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A new characterization
of semisimple Lie algebras


Author: Said Benayadi
Journal: Proc. Amer. Math. Soc. 125 (1997), 685-688
MSC (1991): Primary 17B05, 17B20
MathSciNet review: 1353376
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using Casimir elements, we characterize the semisimple Lie algebras among the quadratic Lie algebras. This characterization gives, in particular, a generalization of a consequence of Cartan's second criterion.


References [Enhancements On Off] (What's this?)

  • [B1] Saïd Benayadi, Une propriété nécessaire et suffisante pour qu’une algèbre de Lie sympathique quadratique soit semi-simple, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 11, 1155–1158 (French, with English and French summaries). MR 1309092
  • [B2] Saïd Benayadi, Structures de certaines algèbres de Lie quadratiques, Comm. Algebra 23 (1995), no. 10, 3867–3887 (French). MR 1348269, 10.1080/00927879508825437
  • [Bo] N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Seconde édition. Actualités Scientifiques et Industrielles, No. 1285, Hermann, Paris, 1971 (French). MR 0271276

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 17B05, 17B20

Retrieve articles in all journals with MSC (1991): 17B05, 17B20


Additional Information

Said Benayadi
Affiliation: Universite de Metz, Département de Mathematiques, U.R.A. CNRS n$^{∘}$ 399, Ile du Saulcy, F-57045 Metz cedex 01, France
Email: benayadi@poncelet.univ-metz.fr

DOI: https://doi.org/10.1090/S0002-9939-97-03612-5
Keywords: Semisimple Lie algebras, quadratic Lie algebras, Casimir elements
Received by editor(s): May 4, 1995
Received by editor(s) in revised form: September 21, 1995
Communicated by: Roe Goodman
Article copyright: © Copyright 1997 American Mathematical Society