On normal solvability of the Riemann problem with singular coefficient
Authors:
M. Rakowski and I. Spitkovsky
Journal:
Proc. Amer. Math. Soc. 125 (1997), 815826
MSC (1991):
Primary 45E05, 45F15, 47A68
MathSciNet review:
1353395
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose is a singular matrix function on a simple, closed, rectifiable contour . We present a necessary and sufficient condition for normal solvability of the Riemann problem with coefficient in the case where admits a spectral (or generalized WienerHopf) factorization with essentially bounded. The boundedness of is not required when takes injective values a.e. on .
 1.
Joseph
A. Ball and J.
William Helton, BeurlingLax representations using classical Lie
groups with many applications. II. 𝐺𝐿(𝑛,𝐶)
and WienerHopf factorization, Integral Equations Operator Theory
7 (1984), no. 3, 291–309. MR 756761
(86e:47020), http://dx.doi.org/10.1007/BF01208379
 2.
Kevin
F. Clancey and Israel
Gohberg, Factorization of matrix functions and singular integral
operators, Operator Theory: Advances and Applications, vol. 3,
Birkhäuser Verlag, BaselBoston, Mass., 1981. MR 657762
(84a:47016)
 3.
K. Clancey and M. Rakowski, Factorization of Rectangular Matrix Functions Relative to a Contour, manuscript, 1990.
 4.
Guy
David, Opérateurs intégraux singuliers sur certaines
courbes du plan complexe, Ann. Sci. École Norm. Sup. (4)
17 (1984), no. 1, 157–189 (French). MR 744071
(85k:42026)
 5.
Peter
L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and
Applied Mathematics, Vol. 38, Academic Press, New YorkLondon, 1970. MR 0268655
(42 #3552)
 6.
Georgii
S. Litvinchuk and Ilia
M. Spitkovskii, Factorization of measurable matrix functions,
Operator Theory: Advances and Applications, vol. 25, Birkhäuser
Verlag, Basel, 1987. Translated from the Russian by Bernd Luderer; With a
foreword by Bernd Silbermann. MR 1015716
(90g:47030)
 7.
Marek
Rakowski, Spectral factorization of rectangular rational matrix
functions with application to discrete WienerHopf equations, J.
Funct. Anal. 110 (1992), no. 2, 410–433. MR 1194992
(93j:47031), http://dx.doi.org/10.1016/00221236(92)90037J
 8.
M. Rakowski and I. Spitkovsky, Spectral Factorization of Measurable Rectangular Matrix Functions and the Vector Valued Riemann Problem, Revista Matemática Iberoamericana, to appear.
 9.
I. Spitkovsky, Factorization of Measurable MatrixValue Functions and its Relation to the Theory of Singular Integral Equations and the Vector Riemann BoundaryValue Problem, I, English translation:, Differential Equations 17 (1981), 477485.
 1.
 J. A. Ball and J. W. Helton, BeurlingLax Representations Using Classical Lie Groups with Many Applications II: and WienerHopf Factorization, Int. Equ. and Op. Th. 7 (1984), 291309. MR 86e:47020
 2.
 K. Clancey and I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, OT 3, Birkhäuser Verlag, Basel/Boston/Stuttgart, 1981. MR 84a:47016
 3.
 K. Clancey and M. Rakowski, Factorization of Rectangular Matrix Functions Relative to a Contour, manuscript, 1990.
 4.
 G. David, Opérateurs intégraux singuliers sur certains courbes du plan complexe, Ann. Scient. Éc. Norm. Sup. 17 (1984), 157189. MR 85k:42026
 5.
 P. Duren, Theory of spaces, Academic Press, New York, 1970. MR 42:3552
 6.
 G. S. Litvinchuk and I. M. Spitkovsky, Factorization of Measurable Matrix Functions, OT 25, Birkhäuser Verlag, Basel/Boston, 1987. MR 90g:47030
 7.
 M. Rakowski, Spectral Factorization of Rectangular Rational Matrix Functions with Application to Discrete WienerHopf Equations, J. Functional Analysis 10 (1992), 410433. MR 93j:47031
 8.
 M. Rakowski and I. Spitkovsky, Spectral Factorization of Measurable Rectangular Matrix Functions and the Vector Valued Riemann Problem, Revista Matemática Iberoamericana, to appear.
 9.
 I. Spitkovsky, Factorization of Measurable MatrixValue Functions and its Relation to the Theory of Singular Integral Equations and the Vector Riemann BoundaryValue Problem, I, English translation:, Differential Equations 17 (1981), 477485.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
45E05,
45F15,
47A68
Retrieve articles in all journals
with MSC (1991):
45E05,
45F15,
47A68
Additional Information
M. Rakowski
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Email:
rakowski@math.ohiostate.edu
I. Spitkovsky
Affiliation:
Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 231878795
Email:
ilya@cs.wm.edu
DOI:
http://dx.doi.org/10.1090/S0002993997036319
PII:
S 00029939(97)036319
Received by editor(s):
September 8, 1995
Additional Notes:
This research was partially supported by the NSF Grants DMS9302706 and DMS9401848.
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1997
American Mathematical Society
