SIMPLE CONNECTEDNESS OF PROJECTIVE VARIETIES

STEVEN DALE CUTKOSKY

(Communicated by Wolmer V. Vasconcelos)

Abstract. A Lefschetz type theorem is proven relating the algebraic fundamental group of a smooth projective variety X to the algebraic fundamental group of a subvariety set theoretically defined by $\leq \dim(X) - 2$ forms.

In this paper we prove a generalization of Grothendieck’s Lefschetz theorem for complete intersections (SGA2 XII 3.5). Our result is:

Theorem 1. Suppose that k is a field, W is a smooth, geometrically connected subvariety of \mathbb{P}^m_k of dimension n and $Z \subset W$ is a closed subscheme set theoretically defined by the vanishing of r forms of \mathbb{P}^m_k on W.

1. If $r \leq n - 1$ then Z is geometrically connected and there is a surjection $\pi_1(Z) \to \pi_1(W)$.
2. If $r \leq n - 2$, then $\pi_1(Z) \cong \pi_1(W)$.

Corollary 2. Suppose that k is a field and $Z \subset \mathbb{P}^n_k$ is a closed subscheme set theoretically defined by r forms.

1. If $r \leq n - 1$ then Z is geometrically connected.
2. If $r \leq n - 2$, then $\pi_1(Z) \cong \text{Gal}(\bar{k}/k)$ where \bar{k} is an algebraic closure of k.

The corresponding theorem for the topological fundamental group of a complex projective variety follows from Hamm [H] and the Theorem of II 1.2 in [GM]. Their proofs use different methods (Morse theory) and do not extend to positive characteristic.

$\pi_1(X)$ will denote the algebraic fundamental group of a scheme X. If k is a field, \bar{k} will denote an algebraic closure of k.

Simple Connectedness

Proof of the first half of 1. of Theorem 1. Suppose that $r \leq n - 1$. Let K be an extension field of k. Let (A, m) be the local ring of the homogeneous coordinate ring of $W \otimes_k K$, \hat{A} be completion at m. Suppose that Z is set theoretically defined by r forms $f_1, \ldots, f_r \in A$. $r \leq (n + 1) - 2$ implies $\text{spec}(\hat{A}/(f_1, \ldots, f_r)) - \hat{m}$ is connected by Corollary 4 to Theorem 1 [F], since \hat{A} is a domain. Hence Z is geometrically connected.

Definition 3. A morphism $f : X \to Y$ is separable if f is flat and for any $y \in Y$, $X \times_Y k(y)$ is geometrically reduced over $k(y)$.
Lemma 4. Suppose that Y is a noetherian scheme, $f : X \to Y$ is a finite type morphism. Let

$$A = \{ y \in Y \mid X_y \text{ is geometrically reduced over } k(y) \}.$$

Then

1. A is a constructible subset of Y.
2. If $g : Y' \to Y$ is a morphism then

$$g^{-1}(A) = \{ y' \in Y' \mid X \times_Y Y'_y \text{ is geometrically reduced over } k(y') \}.$$

Proof. This is EGA IV.9.7.7 and IV.9.2.2 (iv).

Lemma 5. Suppose that Y is a noetherian scheme and $Z \subset Y$ is a constructible subset. Let Z be the closure of Z in Y. If Z contains no generic points of codimension one irreducible subschemes of Y, then Z has codimension ≥ 2 in Y.

Proof. This follows from the fact proved in EGA 0_{III} 9.2.3 that a constructible subset of an irreducible subset W of Y is dense in W if and only if it contains a nonempty open subset.

We need to generalize to morphisms which are not separable the exact homotopy sequence for proper separable morphisms of SGA1 X 1.4 and Theorem 6.3.2.1 [M].

Theorem 6. Suppose that Y is a connected regular scheme, X is normal, $f : X \to Y$ is a proper morphism such that f is separable in codimension one (in Y) and $f_*\mathcal{O}_X \cong \mathcal{O}_Y$. Let $y \in Y$ be the generic point, $\overline{X}_y = X \times_Y \bar{k}(y)$. Then there is a natural right exact sequence

$$\pi_1(\overline{X}_y) \xrightarrow{\Phi} \pi_1(X) \xrightarrow{\Psi} \pi_1(Y) \to 0.$$

Proof. The proofs that Ψ is surjective and $\Psi \circ \Phi = 0$ are exactly as in the proof of Theorem 6.3.2.1 [M]. We must prove that $\text{Image}(\Phi) \supset \text{kernel}(\Psi)$. By the criterion of 5.2.4 [M], we must show that if $g : X' \to X$ is a connected étale cover of X and the base change $\overline{g} : X' \times_X \overline{X}_y \to \overline{X}_y$ has a section σ over \overline{X}_y, then there exists a connected étale cover Y'/Y such that $X' \cong X \times_Y Y'$.

Suppose that $g : X' \to Y$ is such a morphism. $f \circ g$ is proper and separable in codimension one by Lemma 6.3.2.2 [M]. Let $X' \xrightarrow{h} Y' \to Y$ be the stein factorization of $f \circ g$. By Theorem 6.2.1 [M] $Y' \to Y$ is étale in codimension one. Y' is normal since X' is. By purity of branch locus for regular schemes (c.f. SGA1 X 3.1) $Y' \to Y$ is étale.

It remains to show that the natural map $\alpha : X' \to X \times_Y Y'$ is an isomorphism. This is shown exactly as on pages 115-116 in the proof of Theorem 6.3.2.1 [M].

Corollary 7. Suppose that Y is a connected regular excellent scheme, X is normal, $f : X \to Y$ is a proper morphism such that f is separable in codimension 1, and $f_*\mathcal{O}_X = \mathcal{O}_Y$. Let $z_0 \in Y$ be a point and $z_1 \in Y$ be the generic point. Let $\overline{X}_0 = X \times_Y \bar{k}(z_0)$, $\overline{X}_1 = X \times_Y \bar{k}(z_1)$. Then there is a natural surjection

$$\pi_1(\overline{X}_1) \to \pi_1(\overline{X}_0).$$

Proof. Let $A = \mathcal{O}_Y$, z_0, \hat{A} be the completion of A at its maximal ideal, $Y' = \text{spec}(\hat{A})$. Let z'_1 be the generic point and z'_0 be the closed point of Y', $X' = X \times_Y Y'$, with natural morphism $f' : X' \to Y'$. f' is proper and $f'_*\mathcal{O}_{X'} = \mathcal{O}_{Y'}$. X' is normal since X is excellent. If $P \subset \hat{A}$ is a height one prime then $\text{ht}(P \cap A) \leq 1$. By Lemma
4 \(f' \) is separable in codimension 1. Let \(\overline{X} = X' \times_Y' \overline{k}(z'_0), \overline{X}' = X' \times_Y' \overline{k}(z'_1) \). Let notation be as in the above paragraph. Given \(Y \subset W = k[x_0, \ldots, x_m] \) be the homogeneous ideal of \(W \). Suppose that \(r \leq n - 1 \) and \(k \) is algebraically closed.

Let \(H^1(P^m_k, \mathcal{O}(d)) \otimes I_W = H^1(P^m_k, \mathcal{O}(d)) \otimes I_W = 0 \) and we can take \(d_2 \) arbitrarily large relative to \(d_1 \) such that \(Z \) is defined set theoretically by the vanishing of \(r - 1 \) forms \(f_1, \ldots, f_{r-1} \) of degree \(d_1 \) and a form \(f_r \) of degree \(d_2 \). Let \(t_1 = h^0(W, \mathcal{O}_W(d_1)), t_2 = h^0(W, \mathcal{O}_W(d_2)). \) Let \(a_1^i, \ldots, a_{r-1}^i, b_r^i \) be \((r-1)t_1 + t_2 \) indeterminates, where \(I \) indexes a basis \(\sigma_1, \ldots, \sigma_{t_1} \) of \(H^0(W, \mathcal{O}_W(d_1)) \) and \(J \) indexes a basis \(\tau_1, \ldots, \tau_{t_2} \) of \(H^0(W, \mathcal{O}_W(d_2)) \). Let

\[
F_1 = \sum_{l=1}^{t_1} a_l^i \sigma_1, \ldots, F_{r-1} = \sum_{l=1}^{t_1} a_{r-1}^i \sigma_{l,1}, F_r = \sum_{j=1}^{t_2} b_r^j \tau_j.
\]

\[
F_1, \ldots, F_r \in (k[x_0, \ldots, x_m]/I_W)[a_1^i, \ldots, a_{r-1}^i, b_r^j].
\]

Let \(Y = \text{Proj}(k[a_1^i, \ldots, a_{r-1}^i, b_r^j]), \)

\[
X = V(F_1, \ldots, F_r) \subset Y \times W,
\]

be the subscheme determined by \(F_1, \ldots, F_r \). There is a natural projective morphism \(f : X \to Y \). Let \(p \in Y \) be the closed point such that \((X_p)_{\text{red}} \cong Z_{\text{red}} \).

Proposition 8. Let notation be as in the above paragraph.

1. \(X \) is smooth over \(k \).
2. \(f_* \mathcal{O}_X = \mathcal{O}_Y \).
3. Let \(E = \{ y \in Y \mid X_y \text{ is not geometrically reduced over } k(y) \} \), \(\overline{E} \) be the closure of \(E \) in \(Y \). Then \(\text{codim}_Y(\overline{E}) \geq 2 \).
4. Let \(F = \{ y \in Y \mid \text{there exists } x \in f^{-1}(y) \text{ such that } \mathcal{O}_{X,x} \text{ is not flat over } \mathcal{O}_{Y,y} \} \). Then \(\text{codim}_Y(F) \geq 2 \).

Note That \(E \) is constructible and \(F \) is closed.

Proof. \(X \) is smooth over \(k \) by the Jacobian criterion.

Let \(X \to Y' \to Y \) be the Stein factorization of \(f \). \(Y' \to Y \) is dominant, finite and \(Y' \) is normal. By Bertini’s theorem (cf. II 8.18 [Ha]), there exists a dense open subset \(U \) of \(Y \) such that if \(q \in Y \) is a closed point, then \(X_q \subset W \) is a smooth irreducible complete intersection of dimension \(\geq 1 \). Hence \(Y' \to Y \) is generically 1-1. Thus \(Y' = Y \) by Zariski’s Main Theorem, and \(f_* \mathcal{O}_X = \mathcal{O}_Y \).

Given \(a_l^i \in k \) (with at least one \(a_l^i \neq 0 \)), let

\[
V(a_l^i) = \text{Proj}(k[a_1^i, \ldots, a_{r-1}^i, b_r^j]/(a_l^i a_{l,k}^j - a_k^j a_l^i)) \subset Y.
\]
Each \(V(\overline{a_f^1}) \cong P^{d_2} \). The union of \(V(\overline{a_f^1}) \) over all choices of \(a_f^1 \) is \(Y \). Let
\[
D = \text{Proj}(k[a_1^f, \ldots, a_{(r-1)}^f, b_r^f]/(a_1^f, \ldots, a_{(r-1)}^f)) \cong \text{Proj}(k[b_r^f]).
\]
Let \(\overline{F_1}, \ldots, \overline{F_{r-1}} \in k[x_0, \ldots, x_m]/I_W \) be the corresponding specializations of \(F_1, \ldots, F_{r-1} \) over \((a_f^1) \to (a_f^1) \).

We can choose \(a_f^1 \) such that if \(\Gamma \) is a codimension one integral component of \(F \cup E \) then \(\Gamma \cap V(\overline{a_f^1}) \) is not contained in \(D \) and if \(T \) is the subscheme of \(W \) determined by the vanishing of \(\overline{F}_1, \ldots, \overline{F}_{r-1} \), then \(T \) is a smooth subvariety of \(W \) of dimension \(n - (r - 1) \geq 2 \).

Let \(V = V(\overline{a_f^1}) - D \). \(V \) parametrizes the intersections of \(T \) with the zero locus of sections of \(H^0(W, \mathcal{O}_W(d_2)) \). Hence we have a natural identification
\[
V = \mathcal{V}(S(H^0(W, \mathcal{O}_W(d_2))^*)),
\]
where \(*\) denotes dual \(k \) vector space.

To show that \(\text{codim}_T(E) \geq 2 \) and \(\text{codim}_T(F) \geq 2 \), it suffices by our construction of \(V \) to show that \(\text{codim}_T(V \cap E) \geq 2 \) and \(\text{codim}_T(V \cap F) \geq 2 \).

Let \(I_T = (\overline{F}_1, \ldots, \overline{F}_{r-1}) + I_W \subset k[x_0, \ldots, x_m] \). \(I_T \) is the homogeneous ideal of \(T \). Recall that for fixed \(T \), we are free to choose \(d_2 \) arbitrarily large. Since \(\mathcal{O}(1) \) is ample, \(\dim T \geq 2 \), we can choose \(d_2 \) so that
\begin{enumerate}
 \item \(H^1(W, \mathcal{O}_W(d_2) \otimes I_T) = 0 \).
 \item \(h^0(W, \mathcal{O}_W(d_2) \otimes I_T) < h^0(W, \mathcal{O}_W(d_2)) - 1 \).
 \item If \(D, C \) are nonzero effective divisors on \(T \) such that \(\mathcal{O}_T(D + C) \cong \mathcal{O}_T(d_2) \), then
 \[
 h^0(T, \mathcal{O}_T(C)) < h^0(T, \mathcal{O}_T(d_2)) - \dim \text{Pic}(T) - 1.
 \]
\end{enumerate}

Assertions i) and ii) follow from Serre’s vanishing theorem, and since \(h^0(W, \mathcal{O}_W(d)) \) is a polynomial in \(d \) of degree \(n \) for large \(d \) and \(h^0(T, \mathcal{O}_T(d)) \) is a polynomial in \(d \) of degree \(n - (r - 1) \geq 2 \) for large \(d \).

Now we will verify iii). Let \(s = \dim \text{Pic}(T) + 2 \). If \(d_2 \) is sufficiently large, \(\mathcal{O}_T(d_2) \) has the property that if \(p_1, \ldots, p_s \) are any distinct closed points in \(T \), then
\[
h^0(T, \mathcal{O}_T(d_2) \otimes \mathcal{O}_T(-p_1 - \ldots - p_s)) = h^0(T, \mathcal{O}_T(d_2)) - s.
\]
If \(D, C \) are as in iii), and \(p_1, \ldots, p_s \) are distinct closed points of \(D \), then
\[
h^0(T, \mathcal{O}_T(C)) = h^0(T, \mathcal{O}_T(d_2)) \otimes \mathcal{O}_T(-D))
\leq h^0(T, \mathcal{O}_T(d_2) \otimes \mathcal{O}_T(-p_1 - \ldots - p_s))
< h^0(T, \mathcal{O}_T(d_2)) - \dim \text{Pic}(T) - 1
\]
and iii) holds.

By i) we have a natural exact sequence
\[
(1) \quad 0 \to H^0(W, \mathcal{O}_W(d_2) \otimes I_T) \to H^0(W, \mathcal{O}_W(d_2)) \to H^0(T, \mathcal{O}_T(d_2)) \to 0.
\]

Let \(H \to \mathbf{P}(H^0(T, \mathcal{O}_T(d_2))^*) \) be the universal family parametrizing the subschemes of \(T \) given by vanishing of sections of \(H^0(T, \mathcal{O}_T(d_2)) \). Let
\[
V' = \mathcal{V}(H^0(W, \mathcal{O}_W(d_2))^*) - \mathcal{V}(H^0(W, \mathcal{O}_W(d_2) \otimes I_T)^*).
\]
That is, \(V' \) is the complement of \(\mathcal{V}(H^0(W, \mathcal{O}_W(d_2)^*)) \) in
\[
V = \mathcal{V}(H^0(W, \mathcal{O}_W(d_2))^*).\]
(1) gives a natural surjection
\[\lambda : V' \to \mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) \]
such that \(X_{V'} = \lambda^*(H) \).

We have \(V \cap F = \mathbf{V}(\mathcal{H}^0(W, \mathcal{O}_W(d_2) \otimes I_I^*) \), so that \(\text{codim}_V(V \cap F) \geq 2 \) by ii) and assertion 4) follows.

If \(\zeta \in V \) is the generic point of a codimension 1 subvariety of \(V \), then \(\zeta \in V' \) by ii), and the closure of \(\lambda(\zeta) \) has codimension \(\leq 1 \) in \(\mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) \). Let \(\alpha = \lambda(\zeta) \). By Lemma 4 \(X_{\zeta} \) is geometrically reduced over \(k(\zeta) \) if and only if \(H_\alpha \) is geometrically reduced over \(k(\alpha) \).

Let \(B' \) be the closure of \(\alpha \) in \(\mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) \). There is a finite radicial morphism \(\tau : B \to B' \) such that if \(\beta \) is the generic point of \(B \), \((H_\beta)_{\text{red}} \) is geometrically reduced over \(k(\beta) \) (cf. IV.4.6.6 EGA). If \(H_\beta \) is not reduced, then there exists a dense open \(U \subset B \) and a flat map \((H_\beta)_{\text{red}} \times_B U \to U \) such that the fibers over closed points of \(U \) are pairwise distinct subschemes of \(T \), each given by the vanishing of a section \(H^0(T, \mathcal{O}_T(C)) \) for some effective divisor \(C \) on \(T \) with \(h^0(T, \mathcal{O}_T(d_2) \otimes \mathcal{O}_T(-C)) > 0 \), and where each fiber has a common Hilbert polynomial \(P \). Let \(\text{Hilb}^P \) be the component of the Hilbert scheme of \(T \) of subschemes with the Hilbert polynomial \(P \).

There exists an immersion \(U \to \text{Hilb}^P \) such that \((H_\beta)_{\text{red}} \times_B U \) is the pullback of the universal family over \(\text{Hilb}^P \).

There is a morphism \(\gamma : \text{Hilb}^P \to \text{Pic}(T) \) where the fiber containing the point corresponding to the subscheme \(C \) is \(\mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(C))^*) \). By iii),
\[\dim \text{Hilb}^P \leq \dim \mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) - 2. \]
Hence \(\dim(B') = \dim(U) \leq \dim \mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) - 2 \). This shows that \(\lambda(\beta) = \alpha \) has codimension \(\geq 1 \) in \(\mathbf{P}(\mathcal{H}^0(T, \mathcal{O}_T(d_2))^*) \), a contradiction, so that \(X_{\zeta} \) is geometrically reduced over \(k(\zeta) \). \(\text{codim}_V(V \cap E) \geq 2 \) so that \(\text{codim}_V(E) \geq 2 \).

Proof of Theorem 1. First suppose that \(k \) is algebraically closed. Consider the map \(f : X \to Y \) defined before Proposition 8. By Proposition 8 the assumptions of Corollary 7 are satisfied. Hence there is a surjection \(\pi_1(X_1) \to \pi_1(X_\eta) = \pi_1(Z) \). \(X_1 \subset W \otimes_k k(a_1^t, a_t^t) \) is a smooth irreducible complete intersection of dimension \(\geq 1 \) under the assumptions of 1) and of dimension \(\geq 2 \) under the assumptions of 2). The composite map
\[\pi_1(X_1) \to \pi_1(Z) \to \pi_1(W) \]
is a surjection under the assumptions of 1) and is an isomorphism under the assumptions of 2) by SGA2 XII 3.5 and Proposition 7.3.2 [M]. If \(k \) is not algebraically closed the conclusions of 1) and 2) now hold by SGA1 IX 6.1 or Theorem 8.1.1 [M].

References

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

E-mail address: dale@cutkosky.math.missouri.edu