Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A unique continuation theorem
for the Schrödinger equation
with singular magnetic field

Author: Kazuhiro Kurata
Journal: Proc. Amer. Math. Soc. 125 (1997), 853-860
MSC (1991): Primary 35B60, 35J10, 35Q60
MathSciNet review: 1363173
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show a unique continuation theorem for the Schrödinger equation $(\frac {1}{i}\nabla -{\mathbf {A}} )^2 u+ Vu=0$ with singular coefficients ${\mathbf {A}} $ and $V$.

References [Enhancements On Off] (What's this?)

  • [BKRS] Barcelo, B., Kenig, C. E., Ruiz, A., Sogge, C. D. Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms. Illinois J.Math. 32(1988), 230-245. MR 89h:35048
  • [EK] Eastham, M. S. P., Kalf, H. Schrödinger-type operators with continuous spectra. Pitman Lecture Note Series 65, Longman. MR 84i:35107
  • [FGL] Fabes, E. B., Garofalo, N., Lin, F. H. A partial answer to a conjecture of B.Simon concerning unique continuation. J. Fun. Ana. 88(1990), 194-210. MR 91m:35074
  • [GL1] Garofalo, N., Lin, F. H. Monotonicity properties of variational integrals, $A_p$ weights and unique continuation. Indiana Univ. Math. J. 35(1986), 245-268. MR 88b:35059
  • [GL2] Garofalo, N., Lin, F. H. Unique continuation for elliptic operators: A geometric-variational approach. Comm. Pure Appl. Math. 40(1987), 347-366. MR 88j:35046
  • [Ka] Kalf, H. Une remarque au sujet de prolongement unique des solutions de l'équation de Schrödinger. C.R. Acad. Sc. Paris, 295(1982), 579-581. MR 84f:35032
  • [H] Hörmander, L. Uniqueness theorems for second-order elliptic differential equations. Comm. in P.D.E. 8(1983), 21-64. MR 85c:35018
  • [Ku1] Kurata, K. A unique continuation theorem for uniformly elliptic equations with strongly singular potentials. Comm. in P.D.E. 18(7& 8) (1993), 1161-1189. MR 95b:35034
  • [Ku2] Kurata, K. Local boundedness and continuity for weak solutions of $-(\nabla - i{ \mathbf {b}})^2 u+ Vu=0$. Math. Z. (to appear).
  • [So] Sogge, C. D. Strong uniqueness theorems for second order elliptic differential equations. Amer. J. Math. 112(1990), 943-984. MR 91k:35068
  • [Wo1] Wolff, T. H. Unique continuation for $|\Delta u| \le V|\nabla u|$ and related problems. Revista Math. Iberoamericana 6(1990), 155-200. MR 93a:35061
  • [Wo2] Wolff, T. H. A property of measures in ${ \mathbf {R}}^n$ and an application to unique continuation. Geometric and Fun. Ana. 2, No. 2 (1992), 225-284. MR 93c:35015

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B60, 35J10, 35Q60

Retrieve articles in all journals with MSC (1991): 35B60, 35J10, 35Q60

Additional Information

Kazuhiro Kurata
Affiliation: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03 Japan

Received by editor(s): April 3, 1995
Received by editor(s) in revised form: October 3, 1995
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society