Commensurators of parabolic subgroups of Coxeter groups
Author:
Luis Paris
Journal:
Proc. Amer. Math. Soc. 125 (1997), 731738
MSC (1991):
Primary 20F55
MathSciNet review:
1377001
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a Coxeter system, and let be a subset of . The subgroup of generated by is denoted by and is called a parabolic subgroup. We give the precise definition of the commensurator of a subgroup in a group. In particular, the commensurator of in is the subgroup of in such that has finite index in both and . The subgroup can be decomposed in the form where is finite and all the irreducible components of are infinite. Let be the set of in such that for all . We prove that the commensurator of is . In particular, the commensurator of a parabolic subgroup is a parabolic subgroup, and is its own commensurator if and only if .
 [Bo]
N.
Bourbaki, Éléments de mathématique. Fasc.
XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter
et systèmes de Tits. Chapitre V: Groupes engendrés par des
réflexions. Chapitre VI: systèmes de racines,
Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris,
1968 (French). MR 0240238
(39 #1590)
 [Br]
Kenneth
S. Brown, Buildings, SpringerVerlag, New York, 1989. MR 969123
(90e:20001)
 [BH]
M. Burger and P. de la Harpe, Irreducible representations of discrete groups, in preparation.
 [De]
Vinay
V. Deodhar, On the root system of a Coxeter group, Comm.
Algebra 10 (1982), no. 6, 611–630. MR 647210
(83j:20052a), http://dx.doi.org/10.1080/00927878208822738
 [Ho]
Robert
B. Howlett, Normalizers of parabolic subgroups of reflection
groups, J. London Math. Soc. (2) 21 (1980),
no. 1, 62–80. MR 576184
(81g:20094), http://dx.doi.org/10.1112/jlms/s221.1.62
 [Hu]
James
E. Humphreys, Reflection groups and Coxeter groups, Cambridge
Studies in Advanced Mathematics, vol. 29, Cambridge University Press,
Cambridge, 1990. MR 1066460
(92h:20002)
 [Kr]
D. Krammer, ``The conjugacy problem for Coxeter groups'', Ph. D. Thesis, Utrecht, 1994.
 [Ma]
George
W. Mackey, The theory of unitary group representations,
University of Chicago Press, Chicago, Ill.London, 1976. Based on notes by
James M. G. Fell and David B. Lowdenslager of lectures given at the
University of Chicago, Chicago, Ill., 1955; Chicago Lectures in
Mathematics. MR
0396826 (53 #686)
 [So]
Louis
Solomon, A Mackey formula in the group ring of a Coxeter
group, J. Algebra 41 (1976), no. 2,
255–264. MR 0444756
(56 #3104)
 [Bo]
 N. Bourbaki, ``Groupes et algèbres de Lie, Chapitres IVVI'', Hermann, Paris, 1968. MR 39:1590
 [Br]
 K. S. Brown, ``Buildings'', SpringerVerlag, New York, 1989. MR 90e:20001
 [BH]
 M. Burger and P. de la Harpe, Irreducible representations of discrete groups, in preparation.
 [De]
 V. V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982), 611630. MR 83j:20052a
 [Ho]
 R. B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), 6280. MR 81g:20094
 [Hu]
 J. E. Humphreys, ``Reflection groups and Coxeter groups'', Cambridge studies in advanced mathematics, vol. 29, Cambridge University Press, 1990. MR 92h:20002
 [Kr]
 D. Krammer, ``The conjugacy problem for Coxeter groups'', Ph. D. Thesis, Utrecht, 1994.
 [Ma]
 G. W. Mackey, ``The theory of unitary group representations'', The University of Chicago Press, 1976. MR 53:686
 [So]
 L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255264. MR 56:3104
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20F55
Retrieve articles in all journals
with MSC (1991):
20F55
Additional Information
Luis Paris
Affiliation:
Laboratoire de Topologie, Département de Mathématiques, Université de Bourgogne, U.M.R. 5584, B.P. 138, 21004 Dijon Cedex, France
Email:
lparis@satie.ubourgogne.fr
DOI:
http://dx.doi.org/10.1090/S000299399703815X
PII:
S 00029939(97)03815X
Received by editor(s):
October 17, 1995
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 1997
American Mathematical Society
