Coactions of Hopf algebras on Cuntz algebras

and their fixed point algebras

Author:
Anna Paolucci

Journal:
Proc. Amer. Math. Soc. **125** (1997), 1033-1042

MSC (1991):
Primary 46M05, 16W30, 81R50

DOI:
https://doi.org/10.1090/S0002-9939-97-03595-8

MathSciNet review:
1350959

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study coactions of Hopf algebras coming from compact quantum groups on the Cuntz algebra. These coactions are the natural generalization to the coalgebra setting of the canonical representation of the unitary matrix group as automorphisms of the Cuntz algebra .

In particular we study the fixed point subalgebra under the coaction of the quantum compact groups on the Cuntz algebra by extending to any dimension a result of Konishi (1992).

Furthermore we give a description of the fixed point subalgebra under the coaction of on in terms of generators.

**1.**J. Cuntz, (1977),*Simple -algebras generated by isometries*, Comm. Math. Phys.**57**, p. 173-185. MR**57:7189****2.**J. Cuntz,*Regular actions of Hopf algebras on the -algebra generated by a Hilbert space*, preprint. MR**94m:46104****3.**S. Doplicher, J. E. Roberts, (1987),*Duals of compact Lie groups realized in the Cuntz algebras*, J. Functional Analysis,**74**, 90-120. MR**89a:22011****4.**K. Fredenhagen, K. H. Rehren, and B. Schroer, (1989),*Superselection sectors with braid group statistics and exchange algebras*I, Comm. Math. Phys.**125**, p. 201-226. MR**91c:81047****5.**Kassel, (1994),*Quantum Groups*, Springer Verlag.**6.**H. T. Koelink, (1991),*On -representations of the Hopf -algebra associated with the quantum group*, Compositio Mathematica,**77**, 199-231. MR**92b:16080****7.**A. Ocneanu, (1972),*Path algebras*, A.M.S. meeting in Santa Cruz.**8.**A. Van Daele, (1993),*Dual pairs of Hopf -algebras*, Bull. London Math. Soc.,**25**, 209-230. MR**94c:16053****9.**Y. Konishi, M. Nagisa, and Y. Watatani, (1992),*Some remarks on actions of compact matrix quantum groups on -algebras*, Pacific J. of Mathematics,**153**, p. 119-127. MR**93c:46121****10.**E. Witten, (1986),*Noncommutative geometry and string field theory*, Nuclear Physics B**268**, p. 253-294.**11.**S. L. Woronowicz, (1987a),*Compact matrix pseudogroups*, Comm. Math. Phys.**111**, 613-665. MR**88m:46079****12.**S. L. Woronowicz, (1987b),*Twisted group*, An example of a noncommutative differential calculus, Publ. RIMS**23**, 117-181. MR**88h:46130****13.**S. L. Woronowicz, (1988),*Tannaka-Krein duality for compact matrix pseudogroups, twisted groups*, Inventiones Math.,**93**, p. 35-76. MR**90e:22033****14.**S. L. Woronowicz,*Compact quantum groups*, preprint March 1992.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46M05,
16W30,
81R50

Retrieve articles in all journals with MSC (1991): 46M05, 16W30, 81R50

Additional Information

**Anna Paolucci**

Affiliation:
The Fields Institute, 185 Columbia St. West, Waterloo, Ontario, Canada N2L 5Z5

Address at time of publication:
School of Mathematics, University of Leeds, LS2 9JT United Kingdom

Email:
paolucci@amsta.leeds.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-97-03595-8

Keywords:
$C^*$-algebras,
Hilbert spaces,
representation,
corepresentation,
duality

Received by editor(s):
August 4, 1995

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society