Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Coactions of Hopf algebras on Cuntz algebras
and their fixed point algebras

Author: Anna Paolucci
Journal: Proc. Amer. Math. Soc. 125 (1997), 1033-1042
MSC (1991): Primary 46M05, 16W30, 81R50
MathSciNet review: 1350959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study coactions of Hopf algebras coming from compact quantum groups on the Cuntz algebra. These coactions are the natural generalization to the coalgebra setting of the canonical representation of the unitary matrix group $U(d)$ as automorphisms of the Cuntz algebra $O_d$.

In particular we study the fixed point subalgebra under the coaction of the quantum compact groups $U_q(d)$ on the Cuntz algebra $O_d$ by extending to any dimension $d<\infty $ a result of Konishi (1992).

Furthermore we give a description of the fixed point subalgebra under the coaction of $SU_q(d)$ on $O_d$ in terms of generators.

References [Enhancements On Off] (What's this?)

  • 1. J. Cuntz, (1977), Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57, p. 173-185. MR 57:7189
  • 2. J. Cuntz, Regular actions of Hopf algebras on the $C^*$-algebra generated by a Hilbert space, preprint. MR 94m:46104
  • 3. S. Doplicher, J. E. Roberts, (1987), Duals of compact Lie groups realized in the Cuntz algebras, J. Functional Analysis, 74, 90-120. MR 89a:22011
  • 4. K. Fredenhagen, K. H. Rehren, and B. Schroer, (1989), Superselection sectors with braid group statistics and exchange algebras I, Comm. Math. Phys. 125, p. 201-226. MR 91c:81047
  • 5. Kassel, (1994), Quantum Groups, Springer Verlag.
  • 6. H. T. Koelink, (1991), On $*$-representations of the Hopf $*$-algebra associated with the quantum group $U_q(n)$, Compositio Mathematica, 77, 199-231. MR 92b:16080
  • 7. A. Ocneanu, (1972), Path algebras, A.M.S. meeting in Santa Cruz.
  • 8. A. Van Daele, (1993), Dual pairs of Hopf $*$-algebras, Bull. London Math. Soc., 25, 209-230. MR 94c:16053
  • 9. Y. Konishi, M. Nagisa, and Y. Watatani, (1992), Some remarks on actions of compact matrix quantum groups on $C^*$-algebras, Pacific J. of Mathematics, 153, p. 119-127. MR 93c:46121
  • 10. E. Witten, (1986), Noncommutative geometry and string field theory, Nuclear Physics B 268, p. 253-294.
  • 11. S. L. Woronowicz, (1987a), Compact matrix pseudogroups, Comm. Math. Phys. 111, 613-665. MR 88m:46079
  • 12. S. L. Woronowicz, (1987b), Twisted $SU(2)$ group, An example of a noncommutative differential calculus, Publ. RIMS 23, 117-181. MR 88h:46130
  • 13. S. L. Woronowicz, (1988), Tannaka-Krein duality for compact matrix pseudogroups, twisted $SU(N)$ groups, Inventiones Math., 93, p. 35-76. MR 90e:22033
  • 14. S. L. Woronowicz, Compact quantum groups, preprint March 1992.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46M05, 16W30, 81R50

Retrieve articles in all journals with MSC (1991): 46M05, 16W30, 81R50

Additional Information

Anna Paolucci
Affiliation: The Fields Institute, 185 Columbia St. West, Waterloo, Ontario, Canada N2L 5Z5
Address at time of publication: School of Mathematics, University of Leeds, LS2 9JT United Kingdom

Keywords: $C^*$-algebras, Hilbert spaces, representation, corepresentation, duality
Received by editor(s): August 4, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society