IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups


Authors: Didier Arnal and Jean Ludwig
Journal: Proc. Amer. Math. Soc. 125 (1997), 1071-1080
MSC (1991): Primary 43A30
DOI: https://doi.org/10.1090/S0002-9939-97-03608-3
MathSciNet review: 1353372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of a weak Paley-Wiener theorem for nilpotent Lie groups due to Lipsman and Rosenberg and we introduce a general notion of Q.U.P for any unimodular locally compact group.


References [Enhancements On Off] (What's this?)

  • [Amr,Ber] W. O. Amrein and A. M. Berthier, On support properties of $L^p$-functions and their Fourier transforms, J. Funct. Anal. 24 (1977), 258-267. MR 57:1013
  • [Arn,Cor] D. Arnal and J. C. Cortet, $^*$-product in the method of orbits for nilpotent Lie groups, J. Geom. Phys. 2(2), (1985), 85-116. MR 88a:22017
  • [Arn,Gut] D. Arnal and S. Gutt, Décomposition de $L^2(G)$ et transformation de Fourier adaptée pour un groupe de Lie nilpotent, C. R. Acad. Sci. Paris, t. 306, Série I, (1988), 25-28. MR 88m:22015
  • [Ben] M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), 180-183. MR 86f:43006
  • [Cor,Gre] L. Corwin, F. P. Greenleaf, Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples, Cambridge studies in advanced mathematics 18 (1990). MR 92b:22007
  • [Cow,Pri,Sit] M. Cowling, J. F. Price and A. Sitaram, A qualitative uncertainty principle for semisimple Lie groups, J. Austral. Math. Soc. (Ser. A) 35 (1988), 127-132. MR 89d:43005
  • [Dix(1)] J. Dixmier, Les $C^*$-Algèbres et leurs Représentations, Gauthier-Villars (1969). MR 39:7442
  • [Dix(2)] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires. Publ. Math. IHES 6 (1960), 13-25. MR 25:149
  • [Ech,Kan,Kum] S. Echterhoff, E. Kaniuth and A. Kumar, A qualitative uncertainty principle for certain locally compact groups, Forum Math. 3 (1991) 355-369. MR 93a:43005
  • [Mat,Szu] T. Matolcsi and J. Szücs, Intersection des mesures spectrales conjuguées, C. R. Acad. Sci. Paris Série A. 277 (1973), 841-843. MR 48:4804
  • [Gar] G. Garimella, Un théorème de Paley-Wiener pour les groupes de Lie nilpotents, preprint (1995).
  • [Hog] J. A. Hogan, A qualitative Uncertainty Principle For Unimodular Groups of Type I, Trans. Amer. Math. Soc. 330 (1993), 587-593. MR 94b:43003
  • [Lip,Ros] R. L. Lipsman and J. Rosenberg, The behavior of Fourier Transforms For Nilpotent Lie groups, preprint 1994.
  • [Lud] J. Ludwig, Good ideals in the group algebra of a nilpotent Lie group, Math. Z. 161 (1983), 195-210.
  • [Lud,Zah] J. Ludwig and H. Zahir, On the nilpotent $^*$-Fourier Transform, Lett. Math. Phys. 30 (1994), 23-34. MR 94k:22017
  • [Mos] J. D. Moss, Jr., A Paley-Wiener Theorem for selected nilpotent Lie groups, J. Funct. Anal. 114 (1993), 395-411. MR 94e:22017

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A30

Retrieve articles in all journals with MSC (1991): 43A30


Additional Information

Didier Arnal
Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
Email: arnal@poncelet.univ-metz.fr

Jean Ludwig
Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
Email: ludwig@poncelet.univ-metz.fr

DOI: https://doi.org/10.1090/S0002-9939-97-03608-3
Received by editor(s): June 12, 1995
Received by editor(s) in revised form: September 21, 1995
Communicated by: Roe Goodman
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society