Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Distortion Theorem
for Quasiconformal Mappings,
Schottky's Theorem and Holomorphic Motions


Author: G. J. Martin
Journal: Proc. Amer. Math. Soc. 125 (1997), 1095-1103
MSC (1991): Primary 30C60
DOI: https://doi.org/10.1090/S0002-9939-97-03677-0
MathSciNet review: 1363178
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the equivalence of Schottky's theorem and the distortion theorem for planar quasiconformal mappings via the theory of holomorphic motions. The ideas lead to new methods in the study of distortion theorems for quasiconformal mappings and a new proof of Teichmüller's distortion theorem.


References [Enhancements On Off] (What's this?)

  • 1. L.V. Ahlfors, Lectures on Quasiconformal Mappings Van Nostrand 1966. MR 34:336
  • 2. S. Agard, Distortion theorems for quasiconformal mappings Ann. Acad. Sci. Ser. AI 41B (1968) 1-12. MR 36:5340
  • 3. G. Anderson and M.K. Vamanamurthy Distortion functions and quasiconformal mappings (to appear) N.Z.J. Math.
  • 4. K. Astala and G.J. Martin, Holomorphic Motions University of Helsinki, Preprint.
  • 5. A. Beurling and L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956) 125-142. MR 19:258c
  • 6. C. Carathéodory, Theory of functions of a complex variable II, Chelsea, 1954. MR 16:346c
  • 7. A. Douady, Prolongement de Mouvements Holomorphes Séminaire Bourbaki 46 (775) (1993-4) 1-12. MR 95m:58104
  • 8. C. Earle, I. Kra and S. Krushkal, Holomorphic motions and Teichmüller spaces Trans. Amer. Math. Soc., 343, (1994), 927-948. MR 94h:32035
  • 9. F. W. Gehring and G.J. Martin, Schottky's theorem, holomorphic motions and discrete groups, Computational Methods and Function Theory (to appear)
  • 10. J. A. Hempel, Precise bounds in the theorems of Schottky and Picard, J. London Math. Soc. 21 (1980) 279-286. MR 81i:30053
  • 11. J. A. Hempel, The Poincaré metric of the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. 2 (1979) 435-445. MR 81c:30025
  • 12. O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag 1987. MR 88f:30073
  • 13. O. Lehto and K. I. Virtanen, Plane quasiconformal mappings, Springer-Verlag 1973. MR 49:9202
  • 14. O. Lehto, K. I. Virtanen and J. Väisälä, Contribution to the distortion theory of quasiconformal mappings Ann. Acad. Sci. Fenn. Ser. AI 273 (1959) 1-14. MR 23:A321
  • 15. R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983) 193-217. MR 85j:58089
  • 16. Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991) 347-355. MR 91f:58078
  • 17. O. Teichmüller, Untersuchungen über konforme und quasiconforme Abbildung Deutsche Math 3 (1938) 621-678 (or see Collected works, Ed. L.V. Ahlfors and F.W. Gehring, Springer Verlag (1982))

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30C60

Retrieve articles in all journals with MSC (1991): 30C60


Additional Information

G. J. Martin
Affiliation: Department of Mathematics, Australian National University, Canberra, ACT, Australia
Email: martin@math.auckland.ac.nz

DOI: https://doi.org/10.1090/S0002-9939-97-03677-0
Received by editor(s): March 20, 1995
Received by editor(s) in revised form: September 28, 1995
Additional Notes: This research was supported in part by grants from the New Zealand Foundation for Research, Science and Technology and the Australian Research Council.
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society