Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Analysis of the Wu metric II:
The case of non-convex Thullen domains

Authors: C. K. Cheung and K. T. Kim
Journal: Proc. Amer. Math. Soc. 125 (1997), 1131-1142
MSC (1991): Primary 32H15
MathSciNet review: 1363414
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an explicit description of the Wu invariant metric on the non-convex Thullen domains. We show that the Wu invariant Hermitian metric, which in general behaves as nicely as the Kobayashi metric under holomorphic mappings, enjoys better regularity in this case. Furthermore, we show that the holomorphic curvature of the Wu metric is bounded from above everywhere by $-1/2$. This leads the Wu metric to be a natural solution to a conjecture of Kobayashi in the case of non-convex Thullen domains.

References [Enhancements On Off] (What's this?)

  • 1. L. Ahlfors, An extension of Schwarz's lemma, Trans. Am. Math. Soc. 43 (1938), 359-364.
  • 2. K. Azukawa, Negativity of the curvature operator of a bounded domain, Tôhoku Math. J. 39 (1987), 281-285. MR 88m:32060
  • 3. K. Azukawa and M. Suzuki, The Bergman metric on a Thullen domain, Nagoya Math. J. 89 (1983), 1-11. MR 84m:32030
  • 4. S. Bergman, The Kernel function and conformal mapping (2nd ed.), Mathematical Surveys, No. V, Amer. Math. Soc., Providence, R.I., U.S.A., 1970. MR 58:22502
  • 5. J. Bland, The Einstein-Kähler metric on $\{|z|^{2}+|w|^{2p}<1\}$, Michigan Math. J. 33 (1986), 209-220. MR 87i:32036
  • 6. B. Blank, D. Fan, D. Klein, S. Krantz, D. Ma, and M. Pang, The Kobayashi metric of a complex ellipsoid in ${\mathbb C} ^{2}$, Experimental Mathematics 1 (1992), 47-55. MR 93h:32032
  • 7. S.Y. Cheng and S.T. Yau, On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), 507-544. MR 82f:53074
  • 8. C.K. Cheung and Kang-Tae Kim, Analysis of the Wu metric I: The case of convex Thullen domain, Transactions of the A.M.S. 348 (1996), 1429-1457. MR 96i:32026
  • 9. C.K. Cheung and H. Wu, Some new domains with complete Kähler metrics of negative curvature, J. Geom. Anal. 2 (1992), 37-78. MR 93b:32010
  • 10. R.E. Greene and S. Krantz, Deformation of complex structures, estimates for the $\bar \partial $ equation, and stability of the Bergman kernel., Advances in Math. 43 (1982), 1-86. MR 84b:32026
  • 11. K.T. Hahn and P. Pflug, The Kobayashi and Bergman metrics on generalized Thullen domains, Proc. Amer. Math. Soc. 104 (1988), 207-214. MR 89m:32043
  • 12. M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993. MR 94k:32039
  • 13. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to Richard Courant, Interscience, New York (1948), 187-204. MR 10:719b
  • 14. K. Kim and J. Yu, Boundary behavior of the Bergman curvature in the strictly pseudoconvex polyhedral domains, Pacific J. Math. (to appear).
  • 15. P. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. (1978), 275-382. MR 57:3455
  • 16. S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel-Dekker, New York, 1970. MR 43:3503
  • 17. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume II, Interscience Publishers, New York, 1969. MR 38:6501
  • 18. L. Lempert, La métrique de Kobayashi et la representation des domains sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. MR 84d:32036
  • 19. Y.C. Lu, Holomorphic mappings of complex manifolds, J. Diff. Geom. 3 (1968), 292-313. MR 40:3482
  • 20. P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables, Theory and its appl. 29 (1996), 59-71. CMP 96:10
  • 21. H. Royden, The Ahlfors-Schwarz Lemma in several complex variables, Comment. Math. Helv. 55 (1980), 547-558. MR 82i:32049
  • 22. B. Wong, On the holomorphic curvature of some intrinsic metrics, Proc. Amer. Math. Soc. 65 (1977), 57-61. MR 56:12332
  • 23. H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J. 22 (1972-1973), 1103-1108. MR 47:4191
  • 24. -, Old and new invariant metrics,, Several complex variables: Proc. of Mittag-Leffler Inst. 1987-88 (J.E. Fornaess ed.) Math. Notes, Princeton Univ. Press 38 (1993), 640-682. MR 94a:32038
  • 25. S. T. Yau, A general Schwarz lemma for Kähler manifolds, American J. Math. 100 (1978), 197-203. MR 58:6370

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32H15

Retrieve articles in all journals with MSC (1991): 32H15

Additional Information

C. K. Cheung
Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167
Email: Cheung/

K. T. Kim
Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea

Keywords: Kobayashi metric, invariant Hermitian metric, hyperbolic complex manifold, smoothness, holomorphic curvature, Thullen domain
Received by editor(s): October 11, 1995
Additional Notes: Research of the second named author is supported in part by Grants from Pohang University of Science and Technology (POSTECH), GARC, and BSRI
Communicated by: Peter Li
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society