Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the von Neumann-Jordan constant
for Banach spaces


Authors: Mikio Kato and Yasuji Takahashi
Journal: Proc. Amer. Math. Soc. 125 (1997), 1055-1062
MSC (1991): Primary 46B20, 46B03, 46B42
MathSciNet review: 1371131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $C_{\mathrm {NJ}} (E)$ be the von Neumann-Jordan constant for a Banach space $E$. It is known that $1\le C_{\mathrm {NJ}}(E)\le 2$ for any Banach space $E$; and $E$ is a Hilbert space if and only if $C_{\mathrm {NJ}} (E)=1$. We show that: (i) If $E$ is uniformly convex, $C_{\mathrm {NJ}} (E)$ is less than two; and conversely the condition $C_{\mathrm {NJ}} (E)<2$ implies that $E$ admits an equivalent uniformly convex norm. Hence, denoting by $\widetilde C_{\mathrm {NJ}} (E)$ the infimum of all von Neumann-Jordan constants for equivalent norms of $E$, $E$ is super-reflexive if and only if $\widetilde C_{\mathrm {NJ}} (E)<2$. (ii) If $\widetilde C_{\mathrm {NJ}} (E)=2^{2/p-1}$, $1<p\le 2$ (the same value as that of $L_p$-space), $E$ is of Rademacher type $r$ and cotype $r'$ for any $r$ with $1\le r<p$, where $1/r+1/r'=1$; the converse holds if $E$ is a Banach lattice and $l_p$ is finitely representable in $E$ or $E'$.


References [Enhancements On Off] (What's this?)

  • 1. Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253 (88f:46021)
  • 2. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
  • 3. J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114-115.
  • 4. Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 281–288 (1973). MR 0336297 (49 #1073)
  • 5. Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387 (32 #5826)
  • 6. Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 0173932 (30 #4139)
  • 7. Robert C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896–904. MR 0320713 (47 #9248)
  • 8. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723.
  • 9. Mikio Kato and Ken-ichi Miyazaki, Remark on generalized Clarkson’s inequalities for extreme cases, Bull. Kyushu Inst. Tech. Math. Natur. Sci. 41 (1994), 27–31. MR 1292336 (95h:46044)
  • 10. M.Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_p(L_q)$ and Sobolev spaces, Math. Japon. 43 (1996), 505-515. CMP 96:13
  • 11. Gottfried Köthe, Topologisch lineare Räume. I, Zweite verbesserte Auflage. Die Grundlehren der Mathematischen Wissenschaften, Band 107, Springer-Verlag, Berlin-New York, 1966 (German). MR 0194863 (33 #3069)
  • 12. James Kuelbs (ed.), Probability on Banach spaces, Advances in Probability and Related Topics, vol. 4, Marcel Dekker, Inc., New York, 1978. MR 515428 (80c:60007)
  • 13. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367 (81c:46001)
  • 14. Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 0443015 (56 #1388)
  • 15. Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 0394135 (52 #14940)
  • 16. Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 829919 (88a:47020)
  • 17. Gilles Pisier and Quan Hua Xu, Random series in the real interpolation spaces between the spaces 𝑣_{𝑝}, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 185–209. MR 907695 (89d:46011), http://dx.doi.org/10.1007/BFb0078146

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B20, 46B03, 46B42

Retrieve articles in all journals with MSC (1991): 46B20, 46B03, 46B42


Additional Information

Mikio Kato
Affiliation: Department of Mathematics, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan

Yasuji Takahashi
Affiliation: Department of System Engineering, Okayama Prefectural University, Soja 719-11, Japan

DOI: http://dx.doi.org/10.1090/S0002-9939-97-03740-4
PII: S 0002-9939(97)03740-4
Keywords: von Neumann-Jordan constant, uniform convexity, super-reflexivity, type and cotype, finite representability, $p$-convexity and $p$-concavity for a Banach lattice
Received by editor(s): September 8, 1995
Additional Notes: The authors were supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (07640225 (first author), 07640240 (second author))
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society