Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rings with finite essential socle


Authors: José L. Gómez Pardo and Pedro A. Guil Asensio
Journal: Proc. Amer. Math. Soc. 125 (1997), 971-977
MSC (1991): Primary 16L30; Secondary 16D50, 16E50, 16L60, 16S50
DOI: https://doi.org/10.1090/S0002-9939-97-03747-7
MathSciNet review: 1371138
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R$ be a ring such that every direct summand of the injective envelope $E=E(R_R)$ has an essential finitely generated projective submodule. We show that, if the cardinal of the set of isomorphism classes of simple right $R$-modules is no larger than that of the isomorphism classes of minimal right ideals, then $R_R$ cogenerates the simple right $R$-modules and has finite essential socle. This extends Osofsky's theorem which asserts that a right injective cogenerator ring has finite essential right socle. It follows from our result that if $R_R$ is a CS cogenerator, then $R_R$ is already an injective cogenerator and, more generally, that if $R_R$ is CS and cogenerates the simple right $R$-modules, then it has finite essential socle. We show with an example that in the latter case $R_R$ need not be an injective cogenerator.


References [Enhancements On Off] (What's this?)

  • 1. J. E. Björk, Radical properties of perfect modules, J. Reine Angew. Math. 245 (1972), 78-86. MR 47:1864
  • 2. A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. 28 (1977), 61-80. MR 55:10519
  • 3. Nguyen V. Dung, Dinh V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, Longman, Harlow, 1994. MR 96f:16008
  • 4. C. Faith, Algebra II Ring Theory, Springer-Verlag, Berlin and New York, 1976. MR 55:383
  • 5. C. Faith, Embedding modules in projectives. A report on a problem, Lecture Notes in Math., vol. 951, Springer-Verlag, Berlin and New York, 1982, pp. 21-40. MR 84i:16001
  • 6. J. L. Gómez Pardo and P. A. Guil Asensio, Essential embedding of cyclic modules in projectives, Trans. Amer. Math. Soc., to appear.
  • 7. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. MR 80e:16011
  • 8. P. Menal, On the endomorphism ring of a free module, Publ. Mat. Univ. Autonoma Barcelona 27 (1983), 141-154. MR 86g:16046
  • 9. B. L. Osofsky, A generalization of Quasi-Frobenius rings, J. Algebra 4 (1966), 373-387.MR 34:4305
  • 10. J. Rada and M. Saorín, On semiregular rings whose finitely generated modules embed in free modules, Canad. Math. Bull., to appear.
  • 11. S. T. Rizvi, Commutative rings for which every continuous module is quasi-injective, Arch. Math. 50 (1988), 435-442. MR 89e:13009
  • 12. B. Stenström, Rings of Quotients, Springer-Verlag, Berlin and New York, 1975.
  • 13. R. B. Warfield, Jr., Serial rings and finitely presented modules, J. Algebra 37 (1975), 187-222. MR 53:5663

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16L30, 16D50, 16E50, 16L60, 16S50

Retrieve articles in all journals with MSC (1991): 16L30, 16D50, 16E50, 16L60, 16S50


Additional Information

José L. Gómez Pardo
Affiliation: Departamento de Alxebra, Universidade de Santiago, 15771 Santiago de Compostela, Spain
Email: pardo@zmat.usc.es

Pedro A. Guil Asensio
Affiliation: Departamento de Matematicas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
Email: paguil@fcu.um.es

DOI: https://doi.org/10.1090/S0002-9939-97-03747-7
Received by editor(s): September 28, 1995
Additional Notes: This work was partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091) and the Xunta de Galicia (XUGA 10502B94), and the second author by the C. A. de Murcia (PIB 94-25).
Communicated by: Ken Goodearl
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society