HOPFIAN AND CO-HOPFIAN G-CW-COMPLEXES

GOUTAM MUKHERJEE

(Communicated by Thomas Goodwillie)

Abstract. We determine conditions for a G-CW-complex to be a Hopfian or a co-Hopfian object in the G-homotopy category of G-path-connected G-CW-complexes with base points.

1. Introduction

The notion of a Hopfian and a co-Hopfian object of a category is fairly well known. An object X of a category \mathcal{C} is called Hopfian (respectively, co-Hopfian) if every self-epimorphism (respectively, self-monomorphism) $f : X \to X$ is an equivalence; this notion plainly makes sense in any category, since epimorphisms and monomorphisms are categorically defined. It is interesting to recognize Hopfian and co-Hopfian objects in a specific category. Several results are known in this direction, [1], [5], [6], [7], [8], [9], [10], [11]. In [5] and [9], the authors studied Hopfian and co-Hopfian objects of \mathcal{H}, the homotopy category of pointed path-connected CW-complexes.

Let G be a discrete group and $G\mathcal{H}$ denote the G-homotopy category of G-path-connected G-CW-complexes with base points (base points are G-fixed). In this paper we determine conditions for an object of $G\mathcal{H}$ to be a Hopfian or co-Hopfian object of $G\mathcal{H}$. Our results extend the results of [9] to the category $G\mathcal{H}$. Since G is discrete, every object of $G\mathcal{H}$ is also an object of \mathcal{H}. We provide examples to show that the Hopficity and the co-Hopficity of an object X of $G\mathcal{H}$ are independent of the Hopficity and the co-Hopficity of X when considered as an object of \mathcal{H}.

I would like to thank Dr. P. Sankaran for his help in improving some of the results. I would also like to thank the referee for several suggestions.

2. Hopfian objects

Let O_G denote the category of canonical orbits. More precisely, objects of O_G are homogeneous spaces G/H, H a subgroup of G, and a morphism $\hat{g} : G/H \to G/K$ of O_G is given by a subconjugacy relation $g^{-1}Hg \subset K$ (cf. [2]).

An abelian O_G-group is a contravariant functor from the category O_G to the category $\mathbb{A}b$ of abelian groups. Such objects, along with obvious morphisms (natural transformations) between them form an abelian category \mathcal{C}_G. We shall denote the zero object in the abelian category \mathcal{C}_G by $\mathbb{0} : O_G \to \mathbb{A}b$, $G/H \mapsto 0$, the trivial group.
If X is an object of GH, then for every $i \geq 0$, we have an abelian O_G-group $H_iX : O_G \longrightarrow \text{Ab}$, defined by $H_iX(G/H) = H_i(X^H)$, the i-th integral homology group of X^H, X^H being the H-fixed point set of X, for every object G/H of O_G, and $H_iX(\hat{g}) = H_i(\hat{g}) : H_i(X^K) \longrightarrow H_i(X^H)$ for every morphism $\hat{g} : G/H \longrightarrow G/K$ of O_G, where $g : X^K \longrightarrow X^H$ is induced by the action of G on X. Similarly, we have O_G-groups π_*X, π^*_X need not be abelian. A morphism $f : X \longrightarrow Y$ of GH induces a natural transformation $f_* : H_nX \longrightarrow H_nY$, where $f_*(G/H) = H_n(f^H) : H_n(X^H) \longrightarrow H_n(Y^H)$, $n \geq 0$.

We have the following easy lemma.

Lemma 2.1. A morphism $\eta : T \longrightarrow S$ in C_G is an epimorphism (respectively, monomorphism) in Ab if and only if $\eta(G/H) : T(G/H) \longrightarrow S(G/H)$ is an epimorphism (respectively, monomorphism) in Ab for every object G/H of O_G. \hfill \square

Remark 2.2. If C'_G is the category of O_G-groups, then a morphism $\eta : T \longrightarrow S$ in C'_G is a monomorphism if and only if $\eta(G/H)$ is a monomorphism in the category \mathcal{G} of groups. If a morphism $\eta : T \longrightarrow S$ satisfies that $\eta(G/H)$ is onto for every object G/H of O_G, then η is an epimorphism in C'_G.

It follows immediately from the above discussion that:

Proposition 2.3. If an object T in C_G satisfies the condition that $T(G/H)$ is Hopfian (respectively, co-Hopfian) in Ab for every object G/H of O_G, then T is a Hopfian (respectively, co-Hopfian) object in C_G. \hfill \square

Since the Hopfian and co-Hopfian objects in Ab are by now well studied (cf. [1]), the above result gives an idea about the Hopfian and co-Hopfian objects in C_G.

Definition 2.4. A morphism $f : X \longrightarrow Y$ in GH is a weak G-homotopy equivalence if $f_* : H_nX \longrightarrow H_nY$ is an isomorphism for every $n \geq 0$.

Note that if a morphism $f : X \longrightarrow Y$ of GH is such that $f_*(G/H) : \pi_n(X^H) \longrightarrow \pi_n(Y^H)$ is an isomorphism for every $n \geq 0$, then f is a G-homotopy equivalence [3].

Proposition 2.5. Let $f : X \longrightarrow Y$ be an epimorphism in GH. Then $f_* : H_kX \longrightarrow H_kY$ is an epimorphism in C_G for all $k \geq 0$.

Proof. We may without loss of generality assume (by replacing Y by the equivariant mapping cylinder of f) that f is an inclusion. Then consider the maps $\pi : Y \longrightarrow Y/X$ and $c : Y \longrightarrow Y/X$, where π is the quotient and c is the constant G-map. Then $\pi \circ f = c \circ f$. Since f is an epimorphism, it follows that π is G-homotopic to c. Now for every $H \subset G$, it follows from the exact homology sequence

$$
\cdots \longrightarrow H_k(X^H) \longrightarrow H_k(Y^H) \longrightarrow H_k((Y/X)^H) = H_k(Y^H/X^H) \longrightarrow \cdots
$$

that $f_*^H : H_k(X^H) \longrightarrow H_k(Y^H)$ is an epimorphism in Ab for every $k \geq 1$. The result follows from Lemma 2.1. \hfill \square

Remark 2.6. Note that for any morphism $f : X \longrightarrow Y$ in GH, $f_* : H_0X \longrightarrow H_0Y$ is an isomorphism. This follows from the fact that $H_0(X^H)$ is generated by the homology class of the base point $x_0 \in X^G$ in $H_0(X^H)$, and f being a morphism in GH, (f^H), maps the generator of $H_0(X^H)$ onto the generator of $H_0(Y^H)$.

Theorem 2.7. Let $f : X \longrightarrow X$ be a self-epimorphism in GH. If H_nX, $n \geq 1$ are Hopfian objects in C_G, then f is a weak G-homology equivalence.
Proof. By the Remark 2.6 $f_* : \mathcal{H}_G X \rightarrow \mathcal{H}_G X$ is an isomorphism. Since f is an epimorphism, Proposition 2.5 implies that $f_* : \mathcal{H}_G X \rightarrow \mathcal{H}_G X$ is an epimorphism for every $n \geq 1$. The result now follows as $\mathcal{H}_G X$, $n \geq 1$ are Hopfian objects in \mathcal{C}_G.

Recall from [4] the following definition.

Definition 2.8. A G-space X is nilpotent if each $\mathcal{H}_G X$, $n \geq 1$ is nilpotent as an O_G-module over \mathcal{H}_X, that is, there are O_G-submodules

$$\{0\} = \mathcal{H}_n, 0 X \subset \mathcal{H}_n, 1 X \subset \cdots \subset \mathcal{H}_n, r_n X = \mathcal{H}_n X$$

such that the subquotients $A_{n,j} = \mathcal{H}_n, j+1 X / \mathcal{H}_n, j X$ are abelian with trivial $\mathcal{H}_j X$-action.

This is equivalent to saying each X^H is nilpotent in the usual sense with a uniform bound on the order of nilpotence in each dimension (of course, this last condition is vacuous if G is finite).

Corollary 2.9. Let an object X of $\mathcal{G}H$ be nilpotent as a G-space, and $\mathcal{H}_n X$, $n \geq 1$ are Hopfian in \mathcal{C}_G, then X is Hopfian in $\mathcal{G}H$.

Proof. Let $f : X \rightarrow X$ be a self-epimorphism in $\mathcal{G}H$. Then by Theorem 2.7 f is a weak G-homotopy equivalence. But X^H being nilpotent for every $H \subset G$, it follows that $f^H : X^H \rightarrow X^H$ is a homotopy equivalence and hence $f : X \rightarrow X$ is a G-homotopy equivalence. This completes the proof.

It may be noted that Corollary 1.1 of [9] follows from Corollary 2.9 by taking G to be the trivial group.

Let $\lambda : O_G \rightarrow \mathcal{G}$ be an O_G-group, and $K(\lambda, 1)$ denote the equivariant Eilenberg-Mac Lane complex of the type $(\lambda, 1)$ [4]. It may be remarked that for any O_G-group $\lambda : O_G \rightarrow \mathcal{G}F$, $K(\lambda, n)$ is the classifying space for the Bredon cohomology with coefficient λ [2].

Proposition 2.10. For any object X of $\mathcal{G}H$ and O_G-group $\lambda : O_G \rightarrow \mathcal{G}$ there is an adjunction equivalence $[X, K(\lambda, 1)]_G \leftrightarrow \text{Hom}(\mathcal{H}_1 X, \lambda)$.

Proof. If $f : X \rightarrow K(\lambda, 1)$ represents an element of $[X, K(\lambda, 1)]_G$, then the corresponding natural transformation in $\text{Hom}(\mathcal{H}_1 X, \lambda)$ is given by $f_* : \mathcal{H}_1 X \rightarrow \lambda$ (note that $\mathcal{H}_1 K(\lambda, 1) = \lambda$). Conversely, a natural transformation $T : \mathcal{H}_1 X \rightarrow \lambda$ induces a G-map $T_* : K(\mathcal{H}_1 X, 1) \rightarrow K(\lambda, 1)$ (cf. [4]). Note that X can be regarded as a G-subcomplex of $K(\mathcal{H}_1 X, 1)$, for we may obtain $K(\mathcal{H}_1 X, 1)$ from X by attaching suitable equivariant cells to X to kill the higher homotopy groups of the fixed point sets of X. The class represented by T_* / X in $[X, K(\lambda, 1)]_G$ is then the element which corresponds to T.

It follows immediately from Proposition 2.10 that :

Proposition 2.11. If $f : X \rightarrow Y$ is an epimorphism in $\mathcal{G}H$, then $f_* : \mathcal{H}_1 X \rightarrow \mathcal{H}_1 Y$ is an epimorphism in \mathcal{C}_G.

Corollary 2.12. If $\lambda : O_G \rightarrow \mathcal{G}$ is Hopfian in \mathcal{C}_G, then $K(\lambda, 1)$ is a Hopfian object in $\mathcal{G}H$.

Corollary 2.13. If X is $G-\langle n-1 \rangle$-connected, $n > 1$, (that is, each X^H is $(n-1)$-connected) and $f : X \rightarrow X$ is an epimorphism in $\mathcal{G}H$, then $f_* : \mathcal{H}_n X \rightarrow \mathcal{H}_n X$ is an epimorphism.
Proof. Note that since X is G-$(n-1)$-connected, the natural transformation $\pi_n X \to H_n X$ given by the Hurewicz homomorphism is actually an isomorphism. The result now follows from Proposition 2.5.

Thus in view of Remark 2.2, it follows that if $\lambda : O_G \to G$ is such that $\lambda(G/H)$ is a Hopfian group for every $H \subset G$, then $K(\lambda, 1)$ is a Hopfian object in $G\mathcal{H}$. In fact, if $\lambda : O_G \to Ab$ is a Hopfian object in C_G, then $K(\lambda, n)$ is Hopfian for every integer $n > 1$. To see this, we first need to prove the following result.

Proposition 2.14. If X is G-$(n-1)$-connected, $n > 1$, then there is an adjunction equivalence $[X, K(\lambda, n)]_G \leftrightarrow Hom(\pi_n X, \lambda)$, for any $\lambda : O_G \to Ab$.

Proof. Recall from [2] that there exists a spectral sequence whose E_2 term is $E^{p,q}_2 = \text{Ext}^p(H^q(X), \lambda) \Rightarrow H^{p+q}(X; \lambda)$, here $H^{p,q}(X; \lambda)$ is the Bredon cohomology group of X with coefficient λ. There is an edge homomorphism $H^{p,q}_G(X; \lambda) \to Hom(H^p(X; \lambda)$ of the above spectral sequence, which is an isomorphism if $H^q X$ is projective for $q < n$. Now, since X is G-$(n-1)$-connected, $H_q X = 0$ for $0 < q < n$ and $H_n X \cong \pi_n X$, where $0 : O_G \to Ab$ is the zero object in the category C_G. Moreover, since X is G-path-connected, $H_0 X(G/H) = \mathbb{Z}(x^0)$, where x^0 is the base point and (x^0) is the homology class of x^0 and $H_0 X(\hat{g}) = id$. The result now follows from the fact that if B is projective in Ab, then B is projective in C_G, where B is defined by $B(G/H) = B$ for every $H \subset G$ and $B(\hat{g}) = id$, for every morphism $\hat{g} : G/H \to G/K$ of O_G.

Corollary 2.15. If $\lambda : O_G \to Ab$ is Hopfian in C_G, then $K(\lambda, n)$ is Hopfian in $G\mathcal{H}$.

Example 2.16. Let X be a G-connected finite G-CW-complex (that is, X has a finite number of equivariant cells) which has one G-fixed 0-cell and no 1-cell. Since $H_i(X^H)$ is finitely generated abelian for every $H \subset G$, by Lemma 2.1 $H_n X$ is Hopfian. Moreover it is clear that X is G-simply-connected and hence nilpotent. Thus by Corollary 2.9, X is Hopfian in $G\mathcal{H}$.

Example 2.17. Consider the real $4k$-dimensional Euclidean space \mathbb{R}^{4k} as the quaternion k-space \mathbb{H}^k. Let τ be a quaternion of norm one and order p, an odd prime. We can take $\tau = e^{\pi i/p}$. Define an action of \mathbb{Z}_p on $\mathbb{R}^{4k} \cong \mathbb{H}^k$ by

$$\tau(a_1, a_2, \ldots, a_k) = (\tau a_1 \tau^{-1}, \tau a_2 \tau^{-1}, \ldots, \tau a_k \tau^{-1}),$$

for any k-tuple of quaternions (a_1, a_2, \ldots, a_k). Since this action is norm preserving, there results a \mathbb{Z}_p-action on the $(4k - 1)$-sphere S^{4k-1}. The fixed point sets are S^{4k-1} and $(S^{4k-1})^{\mathbb{Z}_p}$. To determine $(S^{4k-1})^{\mathbb{Z}_p}$ we proceed as follows. Let $(a_1, a_2, \ldots, a_k) \in (S^{4k-1})^{\mathbb{Z}_p}$, where $a_r = a^1_r + a^2_r i + a^3_r j + a^4_r k = A^1_r + A^2_r j$, and $A^1_r = a^1_r + a^2_r i$, $A^2_r = a^2_r + a^3_r i$, $r = 1, 2, \ldots, k$. We must have $\tau a_r = a_r \tau$. Now $\tau a_r = \tau A^1_r + \tau A^2_r$, whereas $a_r = (A^1_r + A^2_r) \tau = A^1_r \tau + A^2_r \tau$. Thus we must have $\tau A^1_r = \mathbb{T} A^1_r$ or $\tau = \mathbb{T} A^2_r$. For $r = 1, 2, \ldots, k$, we must have $\tau A^1_r = \mathbb{T} A^2_r$ or $\tau = \mathbb{T} A^2_r$. Therefore, $A^2_r = 0$, as $\tau \neq \mathbb{T}$. Therefore $(a_1, a_2, \ldots, a_k) \in \mathbb{C}^k$, with $||(a_1, a_2, \ldots, a_k)|| = 1$. Thus $(S^{4k-1})^{\mathbb{Z}_p} = S^{2k-1}$. Now S^{4k-1} is a smooth compact \mathbb{Z}_p-manifold, it admits a structure of a finite \mathbb{Z}_p-CW-complex on which \mathbb{Z}_p-path-connected and has a base point. Moreover, note that the fixed point sets S^{4k-1} and S^{2k-1} being simply-connected, are nilpotent. It is now easy to check that all the conditions of Corollary 2.9 are satisfied and hence it is a Hopfian object in $G\mathcal{H}$ where $G = \mathbb{Z}_p$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
3. Co-Hopfian objects

In this section we obtain conditions for an object X of \mathcal{H} to be a co-Hopfian object. The following proposition is a straightforward consequence of Proposition 2.10.

Proposition 3.1. $f : S \to T$ is a monomorphism in \mathcal{C}_G' if and only if the induced map $f_* : K(S, 1) \to K(T, 1)$ is a monomorphism in \mathcal{H}. □

Corollary 3.2. For an object $\lambda : O_G \to \mathcal{G}$ in \mathcal{C}_G', $K(\lambda, 1)$ is co-Hopfian if and only if λ is co-Hopfian. □

As before, we may obtain from Proposition 2.14 that:

Corollary 3.3. For any $\lambda : O_G \to \text{Ab} \in \mathcal{C}_G$ and $n > 1$, $K(\lambda, n)$ is co-Hopfian in \mathcal{H} if and only if λ is co-Hopfian in \mathcal{C}_G. □

Definition 3.4. For an object X of \mathcal{H}, we say X is finitely generated if $\pi_i X(G/H) = \pi_i (X^H)$ is finitely generated for every $H \subset G$. X will be called G-homotopically finite type if X is finitely generated for all $i \geq 2$.

Theorem 3.5. Suppose an object X of \mathcal{H} is G-homotopically finite type and such that $\pi_i (X^H)$ is a co-Hopfian group and the inclusion $X^H \subset X$ is a monomorphism in \mathcal{H} for every $H \subset G$. Then X is a co-Hopfian object in \mathcal{H}.

Proof. Let $f : X \to X$ be a self-monomorphism in \mathcal{H}. We show that under the given hypothesis $f^H : X^H \to X^H$ is a monomorphism in \mathcal{H} for every $H \subset G$. Since $\pi_i (X^H)$ is finitely generated for all $i \geq 2$ and $\pi_1 (X^H)$ is co-Hopfian, it will follow from Theorem 7 and Corollary 2 of [5] that $f^H : X^H \to X^H$ is a homotopy equivalence. Hence f is a G-homotopy equivalence.

First we show that $f = f^{(e)} : X = X^{(e)} \to X^{(e)} = X$ is a monomorphism in \mathcal{H}. We assume that the base point $x^0 \in X^G$ is a G-fixed 0-cell in X. Let $\alpha, \beta : Y \to X$ be morphisms in \mathcal{H} such that $f \circ \alpha \simeq f \circ \beta$. Let $F : Y \times I \to X$ be the homotopy $f \circ \alpha \simeq f \circ \beta$. Consider $Y \times G$ as a G-space, where the action of G is given by $g(y, h) = (y, gh)$, for all $g \in G, h \in G, y \in Y$. Clearly, the above action is free. Let y^0 be the base point of Y, which is a 0-cell of Y. Define $\overline{\pi} : Y \times G \to X$ by $\overline{\pi}(y, e) = \alpha(y)$ and $\overline{\pi}(y, g) = g \alpha(y)$. Then $\overline{\pi}$ is a G-map. Note that $\overline{\pi}(y^0, g) = x^0$ for all $g \in G$. Let Y_G be the space obtained from $Y \times G$ by identifying all points $(y^0, g), g \in G$. Then Y_G is a G-complex having a natural base point, which is a G-fixed 0-cell and is clearly an object of \mathcal{H}. The map $\overline{\pi}$ induces a G-map $\overline{\alpha} : Y_G \to X$ which is base point preserving. Similarly, we have $\overline{\beta} : Y_G \to X$. The homotopy $F : Y \times I \to X$ gives rise to a G-homotopy $\overline{F} : Y \times G \times I \to X$, between $f \circ \overline{\pi}$ and $f \circ \overline{\beta}$, by setting $\overline{F}(y, e, t) = F(y, t)$ and $\overline{F}(y, g, t) = g F(y, t)$ for all $g \in G, t \in I$. Since the homotopy F is base point preserving, \overline{F} induces a G-homotopy $\overline{F} : Y_G \times I \to X$, such that \overline{F} is a G-homotopy between $f \circ \overline{\alpha}$ and $f \circ \overline{\beta}$. Since f is a monomorphism in \mathcal{H}, $\overline{\alpha}$ is G-homotopic to $\overline{\beta}$. Let $\overline{F}_1 : Y_G \times I \to X$ be a G-homotopy between them. Let $i : Y \to Y_G$ be the imbedding $y \mapsto [y, e]$. Let $F_1 : Y \times I \to X$ be the composition of $i \times id : Y \times I \to Y_G \times I$ and \overline{F}_1. Then it is easy to see that $F_1 : \alpha \simeq \beta$. Thus $f^{(e)} : X^{(e)} \to X^{(e)}$ is a monomorphism in \mathcal{H}.

Next, let $H \subset G$. Let $\alpha, \beta : Y \to X^H$ be any two morphisms in \mathcal{H} such that $f^H \circ \alpha \simeq f^H \circ \beta$. Let i denote the inclusion $X^H \subset X$. Then, $i \circ f^H \circ \alpha \simeq i \circ f^H \circ \beta$. This implies $f \circ i \circ \alpha \simeq f \circ i \circ \beta$, since f being a G-map $i \circ f^H = f \circ i$. Since $f^{(e)}$
Example 4.1. Therefore X is a monomorphism in \mathcal{H}, we conclude $i \circ \alpha \simeq i \circ \beta$. Now since $i : X^H \subset X$ is a monomorphism, it follows that $\alpha \simeq \beta$. Therefore, f^H is a monomorphism in \mathcal{H}. This completes the proof of the theorem.

As an immediate corollary we get

Corollary 3.6. Suppose X is an object of $G\mathcal{H}$ such that the action of G is semifree and $X^G = \{x^0\}$, x^0 is the G-fixed 0-cell. Moreover, suppose that $\pi_i(X)$ is finitely generated for $i \geq 2$ and $\pi_1(X)$ is a co-Hopfian group. Then X is a co-Hopfian object in $G\mathcal{H}$.

Example 3.7. Let $n \geq 2$ and $X = S^n \vee S^n$. Then X has a \mathbb{Z}_2-CW-complex structure as described below. It has one 0-cell of the type $\mathbb{Z}_2/\{e\}$, and one equivariant n-cell of the type $\mathbb{Z}_2/\{e\}$, where e denotes the identity element of \mathbb{Z}_2. This action is given by “switching coordinates”, regarding the wedge as a subspace of the Cartesian product $S^n \times S^n$. Since X is a 1-connected finite complex, $\pi_q(X)$ is finitely generated. Moreover, $\pi_1(X) = \{0\}$. Hence it follows from Corollary 3.6 that X is co-Hopfian in $G\mathcal{H}$ where $G = \mathbb{Z}_2$.

4. $G\mathcal{H}$ versus \mathcal{H}

Recall that if G is discrete and X a G-CW-complex, then X is in a canonical way a CW-complex (cf. [3], p. 102). Thus if X is an object of $G\mathcal{H}$, then X can also be regarded as an object of \mathcal{H}. We shall show by the following examples that an object X of $G\mathcal{H}$ can be Hopfian (respectively, co-Hopfian) in $G\mathcal{H}$ without being Hopfian (respectively, co-Hopfian) in \mathcal{H}, and vice versa.

Example 4.1. Let $G = \mathbb{Z}_2$. Define an O_G-group $\lambda : O_G \rightarrow \mathbb{A}b$ as follows. $\lambda(G/G) = \mathbb{Z}$, $\lambda(G/\{e\}) = \{0\}$, the trivial group, and $\lambda(G/\{e\}) \rightarrow G/G : \mathbb{Z} \rightarrow \{0\}$ is the obvious homomorphism. Let $X = K(\lambda, 1)$. Then X is co-Hopfian in \mathcal{H}, but not co-Hopfian in $G\mathcal{H}$.

To see this, note that $X = X^{(e)} = K(\lambda(G/\{e\}), 1)$. Hence X is contractible. Therefore X is co-Hopfian in \mathcal{H}. Next, note that λ is not co-Hopfian in C_G. For, $\eta : \lambda \rightarrow \lambda$ defined by $\eta(G/G) : x \mapsto 2x$, $\eta(G/\{e\}) = id_{\{0\}}$ is a monomorphism, but not an isomorphism in C_G by Lemma 2.1. It follows from Corollary 3.2 that X is not co-Hopfian in $G\mathcal{H}$.

Let $G = \mathbb{Z}$, and H_n denote the subgroup $2^n\mathbb{Z}$, $n \geq 0$. If H is a subgroup of G, $H \neq H_n$ for all n, then $H = k\mathbb{Z}$, where $k = 2^n \ell$, ℓ odd , ℓ is not 1 or -1 and $n_i \geq 0$. Clearly $k\mathbb{Z} \subset H_n$, and there is no subconjugacy relation of the type $H_m \subset k\mathbb{Z}$. Also note that $H_{n+1} \subset H_n$ for all n. We define an O_G-group $\lambda : O_G \rightarrow \mathbb{A}b$ as follows. Let Q^∞ denote the direct sum $\bigoplus_i Q e_i$ of countable copies of Q with basis $\{e_1, e_2, \ldots, e_n, \ldots\}$. Thus Q^∞ is a vector space over Q. Clearly, Q^∞ is neither Hopfian nor co-Hopfian in $\mathbb{A}b$. Let $Q^n = \bigoplus_{i=1}^n Q e_i$. Note that every group homomorphism $Q^n \rightarrow Q^n$ is actually a Q-linear homomorphism $Q^n \rightarrow Q^n$. Then it is easy to see that Q^n is both Hopfian and co-Hopfian in $\mathbb{A}b$.

Set $\lambda(G/\{e\}) = Q^\infty$, $\lambda(G/H_n) = Q^n$ for all $n \geq 0$. If $H = k\mathbb{Z}$, $k = 2^n \ell$, ℓ odd and not equal to 1 or -1, $n_i \geq 0$, then we set $\lambda(G/k\mathbb{Z}) = Q^{n_i}$. Here, $Q^0 = \{0\}$, the trivial group. For every subgroup relation $H_{n+1} \subset H_n$, let

$$
\lambda(G/H_{n+1} \rightarrow G/H_n) : Q^n \rightarrow Q^{n+1}
$$

be the standard inclusion. For $k\mathbb{Z} \subset H_n$, $k = 2^n \ell$, ℓ odd and not equal to 1 or -1, $n_i \geq 0$, let $\lambda(G/k\mathbb{Z} \rightarrow G/H_n) : Q^{n_i} \rightarrow Q^{n_i}$ be the identity. Again, for the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
inclusions \(\{e\} \subset H_n \) and \(\{e\} \subset k\mathbb{Z}, \) \(k = 2^m \ell, \) \(\ell \) odd and not equal to 1 or \(-1, \) \(n_i \geq 0, \) we set \(\lambda(G/\{e\}) \to G/H_n : Q^n \to Q^\infty \) and \(\lambda(G/\{e\}) \to G/k\mathbb{Z} : Q^n_k \to Q^\infty \) to be the obvious inclusions. Then it is easy to see that \(\lambda \) is a contravariant functor from \(O_G \) to \(Ab. \)

Example 4.2. Let \(\lambda \) be as above and \(X = K(\lambda, 1) \). Then \(X \) is co-Hopfian in \(G\mathcal{H}, \) but not co-Hopfian in \(\mathcal{H}. \)

Since \(X = X^{\{e\}} = K(\lambda(G/\{e\}), 1) \) and \(Q^\infty \) is not co-Hopfian, it follows that \(X \) is not co-Hopfian in \(\mathcal{H}. \) To show that \(X \) is co-Hopfian in \(G\mathcal{H}, \) by Corollary 3.2, it is enough to show that \(\lambda \) is co-Hopfian. Let \(\eta : \lambda \to \lambda \) be a monomorphism. Then, by Lemma 2.1, \(\eta(G/H) : \lambda(G/H) \to \lambda(G/H) \) is a monomorphism for every subgroup \(H \) of \(G. \) By construction of \(\lambda, \) it is clear that \(\eta(G/H) \) is an isomorphism for every subgroup \(H \neq \{e\}. \) We shall show that \(\eta(G/\{e\}) \) is also an isomorphism. Let \(x \in Q^\infty. \) Then we can find \(n \) such that \(x \in Q^n. \) Since \(\eta(G/H_n) \) is an isomorphism, \(x \) lies in the image of \(\eta(G/H_n). \) By naturality of \(\eta \) we have

\[
\eta(G/\{e\})\lambda(G/\{e\}) \to G/H_n = \lambda(G/\{e\}) \to G/H_n \eta(G/H_n).
\]

It follows from Lemma 2.1 that \(\eta \) is an isomorphism. Thus \(\lambda \) is co-Hopfian.

Example 4.3. Let \(G = \mathbb{Z}, \) and \(\lambda : O_G \to Ab \) be as in Example 4.2. Let \(X = K(\lambda, 1). \) Then \(X \) is Hopfian in \(G\mathcal{H}, \) but not Hopfian in \(\mathcal{H}. \)

By an argument similar to the previous case, one can show that every epimorphism \(\eta : \lambda \to \lambda \) is an isomorphism. Thus \(\lambda \) is Hopfian. It follows from Corollary 2.12 that \(X \) is Hopfian in \(G\mathcal{H}. \) To show that \(X \) is not Hopfian in \(\mathcal{H}, \) it is enough to produce a self-epimorphism of \(X \) which is not an equivalence. Since \(Q^\infty \) is not Hopfian, we have an epimorphism \(f : Q^\infty \to Q^\infty \) which is not an isomorphism. Let \(F : X = K(Q^\infty, 1) \to K(Q^\infty, 1) = X \) be the map induced by \(f. \) Clearly, \(F \) is not an equivalence as \(\pi_1(F) = f \) is not an isomorphism. We claim that \(F \) is an epimorphism. Let \(\alpha, \beta : X \to Y \) be base point preserving maps such that \(\alpha \circ F \simeq \beta \circ F. \) Since \(f : Q^\infty \to Q^\infty \) is surjective, there exists a homomorphism \(s : Q^\infty \to Q^\infty \) such that \(f \circ s = id. \) Let \(S : X \to X \) be the map induced by \(s. \) Then \(F \circ S \simeq id_X. \) This implies \(\alpha \simeq \beta. \) Thus \(F \) is an epimorphism. Hence \(X \) is not Hopfian in \(\mathcal{H}. \)

Example 4.4. Let \(G = \mathbb{Z}_2, \) and \(\lambda : O_G \to Ab \) be the \(O_G \)-group defined as follows: \(\lambda(G/G) = Q^\infty, \lambda(G/\{e\}) = \{0\}, \) and \(\lambda(G/\{e\}) \to G/G : Q^\infty \to \{0\} \) is the obvious homomorphism. Then \(X = K(\lambda, 1) \) is Hopfian in \(\mathcal{H}, \) but not Hopfian in \(G\mathcal{H}. \)

Clearly \(X \) is Hopfian in \(\mathcal{H}, \) as \(X \) is contractible. To see that \(X \) is not Hopfian in \(G\mathcal{H}, \) it is enough to find an epimorphism in \(G\mathcal{H} \) which is not an equivalence. Let \(\alpha : \lambda \to \lambda \) be the natural transformation defined as follows: \(\alpha(G/\{e\}) = id_{\{0\}} \) and \(\alpha(G/G) : Q^\infty \to Q^\infty \) any epimorphism which is not an isomorphism. Let \(\beta : Q^\infty \to Q^\infty \) be a homomorphism such that \(\alpha(G/G) \circ \beta = id. \) This defines a right inverse \(\beta : \lambda \to \lambda \) of \(\alpha, \) where \(\beta(G/G) = \beta \) and \(\beta(G/\{e\}) = id_{\{0\}}. \) Let \(T, S : X \to X \) be the \(G \)-maps induced by \(\alpha \) and \(\beta \) respectively. Then \(T \circ S \) is \(G \)-homotopic to \(id_X. \) Clearly, \(T \) is not a \(G \)-equivalence, as \(\pi_1(TG) = \alpha(G/G) \) is not an isomorphism. Now proceeding as in Example 4.3 one shows that \(T : X \to X \) is an epimorphism in \(G\mathcal{H}. \)
REFERENCES

SCHOOL OF MATHEMATICS, SPIC SCIENCE FOUNDATION, 92, G. N. CHETTY ROAD, MADRAS-17, INDIA

E-mail address: goutam@ssf.ernet.in
Current address: Stat-Math Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta-35, India

E-mail address: goutam@isical.ernet.in