Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on the zero-sequences
of solutions of $f'' + Af=0$

Author: Andreas Sauer
Journal: Proc. Amer. Math. Soc. 125 (1997), 1143-1147
MSC (1991): Primary 34A20; Secondary 30D20
MathSciNet review: 1377005
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a sufficient condition for complex sequences to be zero-sequences of solutions of $f'' + Af=0$ where $A$ is transcendental entire and of finite order.

References [Enhancements On Off] (What's this?)

  • [B] S. Bank, A note on the zero-sequences of solutions of linear differential equations, Resultate Math. 13 (1988), 1-11. MR 89b:34009
  • [BL] S. Bank, I. Laine, On the oscillation theory of $f'' + Af = 0$ where $A$ is entire, Trans. Amer. Math. Soc. 273 (1982), 351-363. MR 83k:34009
  • [BS] H. Behnke, F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer, Berlin-Göttingen-Heidelberg-New York, 1962. MR 26:5137
  • [HC] A. Hurwitz, R. Courant, Funktionentheorie, Springer, Berlin-Göttingen-Heidelberg-New York, 1964. MR 30:3959
  • [L] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin - New York, 1993. MR 94d:34008
  • [N] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929. MR 54:5468
  • [S] L. C. Shen, Construction of a differential equation $y'' + Ay = 0$ with solutions having the prescribed zeros, Proc. Amer. Math. Soc. 95 (1985), 544-546.MR 87b:34005

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34A20, 30D20

Retrieve articles in all journals with MSC (1991): 34A20, 30D20

Additional Information

Andreas Sauer

Received by editor(s): October 11, 1995
Additional Notes: This research was done during a visit at the University of Joensuu, Finland, financed by the DFG (Deutsche Forschungsgemeinschaft).
Communicated by: Hal L. Smith
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society