A convolution estimate

for a measure on a curve in

Author:
Daniel M. Oberlin

Journal:
Proc. Amer. Math. Soc. **125** (1997), 1355-1361

MSC (1991):
Primary 42B15, 42B20

MathSciNet review:
1363436

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and fix an interval . If is the operator on defined by , then maps into .

**1.**Michael Christ,*A convolution inequality concerning Cantor-Lebesgue measures*, Rev. Mat. Iberoamericana**1**(1985), no. 4, 79–83. MR**850410**, 10.4171/RMI/19**2.**S. W. Drury,*Degenerate curves and harmonic analysis*, Math. Proc. Cambridge Philos. Soc.**108**(1990), no. 1, 89–96. MR**1049762**, 10.1017/S0305004100068973**3.**I. M. Gel’fand and G. E. Shilov,*Generalized functions. Vol. I: Properties and operations*, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR**0166596****4.**David McMichael,*Damping oscillatory integrals with polynomial phase*, Math. Scand.**73**(1993), no. 2, 215–228. MR**1269260****5.**Daniel M. Oberlin,*Convolution estimates for some measures on curves*, Proc. Amer. Math. Soc.**99**(1987), no. 1, 56–60. MR**866429**, 10.1090/S0002-9939-1987-0866429-6**6.**Daniel M. Oberlin,*Oscillatory integrals with polynomial phase*, Math. Scand.**69**(1991), no. 1, 45–56. MR**1143473****7.**D. Oberlin,*Estimates for oscillatory integrals with polynomial phase*, Trans. Amer. Math. Soc. (to appear).**8.**Yibiao Pan,*Convolution estimates for some degenerate curves*, Math. Proc. Cambridge Philos. Soc.**116**(1994), no. 1, 143–146. MR**1274164**, 10.1017/S0305004100072431**9.**Y. Pan,*-improving properties for some measures supported on curves*, Math. Scand. (to appear).**10.**Yibiao Pan,*A remark on convolution with measures supported on curves*, Canad. Math. Bull.**36**(1993), no. 2, 245–250. MR**1222541**, 10.4153/CMB-1993-035-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B15,
42B20

Retrieve articles in all journals with MSC (1991): 42B15, 42B20

Additional Information

**Daniel M. Oberlin**

Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-3027

Email:
oberlin@math.fsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03716-7

Received by editor(s):
July 18, 1995

Received by editor(s) in revised form:
October 31, 1995

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1997
American Mathematical Society