Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Tensor product of Hopf bimodules over a group

Author: Claude Cibils
Journal: Proc. Amer. Math. Soc. 125 (1997), 1315-1321
MSC (1991): Primary 18D10, 20G05, 20G10
MathSciNet review: 1371118
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the monoidal structure of the category of Hopf bimodules of a finite group and we derive a surjective ring map from the Grothendieck ring of the category of Hopf bimodules to the center of the integral group ring. We consider analogous results for the multiplicative structure of the Hochschild cohomology.

References [Enhancements On Off] (What's this?)

  • 1. D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
  • 2. Alain Bruguières, Théorie tannakienne non commutative, Comm. Algebra 22 (1994), no. 14, 5817–5860 (French, with English summary). MR 1298753,
  • 3. Cartan, H., Eilenberg, S.:Homological algebra. Oxford University Press. 1956 MR 17:1040e
  • 4. Cibils C., Rosso M.: Algèbres des chemins quantiques. Publication interne, Genève (1993) et prépublication de l'IRMA 047, Strasbourg (1993). To appear in Advances in Maths.
  • 5. Cibils, C., Solotar, A.: Hochschild cohomology algebra and Hopf bimodules of an abelian group. Prepublication.
  • 6. Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
  • 7. P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
  • 8. R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128130,
  • 9. V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
  • 10. Jones, V.: Fusion en algèbres de von Neumann et groupes de lacets [d'après A. Wassermann]. Séminaire Bourbaki 800 1995
  • 11. Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
  • 12. Luzstig, G. Leading coefficients of character values of Hecke algebras. Arcata Conference on Representations of Finite Groups. Proc. of Symp. in Pure Math. 47 A.M.S. 1987
  • 13. Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637
  • 14. Warren D. Nichols, Bialgebras of type one, Comm. Algebra 6 (1978), no. 15, 1521–1552. MR 0506406,
  • 15. Zhong Qi Ma, Representations of the braid group obtained from quantum 𝑠𝑙(3) enveloping algebra, J. Math. Phys. 31 (1990), no. 3, 550–556. MR 1039204,
  • 16. Marc Rosso, Groupes quantiques et algèbres de battage quantiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 2, 145–148 (French, with English and French summaries). MR 1320345
  • 17. Wassermann, A.: Fusion for von Neumann algebras and loop groups, to appear.
  • 18. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), no. 1, 125–170. MR 994499

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 18D10, 20G05, 20G10

Retrieve articles in all journals with MSC (1991): 18D10, 20G05, 20G10

Additional Information

Claude Cibils
Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland; Institut Fourier, Laboratoire de Mathématiques, URA 188 du CNRS, BP 74, F-38402 St. Martin d’Hères cedex, France
Address at time of publication: Départemente de Mathématiques, Université de Montpellier 2, F-34095 Montpellier cedex 5, France

Received by editor(s): July 27, 1995
Received by editor(s) in revised form: December 1, 1995
Additional Notes: Supported by University of Bern and University of Grenoble
Communicated by: Ken Goodearl
Article copyright: © Copyright 1997 American Mathematical Society