Lifting of Kadec-Klee Properties

to Symmetric Spaces of Measurable Operators

Authors:
P. G. Dodds, T. K. Dodds and F. A. Sukochev

Journal:
Proc. Amer. Math. Soc. **125** (1997), 1457-1467

MSC (1991):
Primary 46L50, 46E30; Secondary 46B20, 47D15

DOI:
https://doi.org/10.1090/S0002-9939-97-03731-3

MathSciNet review:
1371122

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if is a separable symmetric Banach function space on the positive half-line, then has the Kadec-Klee property (respectively, uniform Kadec-Klee property) for local convergence in measure if and only if, for every semifinite von Neumann algebra , the associated space of -measurable operators has the same property.

**[Ar]**J. Arazy,*More on convergence in unitary matrix spaces*, Proc. Amer. Math. Soc.**83**(1981), 44-48. MR**82f:46009****[AS]**M. A. Akcoglu and L. Sucheston,*La monotonicité uniforme des normes et théorès ergodiques*, C. R. Acad Sc. Paris**301**(1985), 359-360. MR**86k:46037****[Bi]**G. Birkhoff,*Lattice theory*, A. M. S. Colloquium Publications, XXV, 3rd. ed., 1967. MR**37:2638****[CDS]**V. I. Chilin, P. G. Dodds and F. A. Sukochev,*The Kadec-Klee property in symmetric spaces of measurable operators*, Israel J. Math., (to appear). CMP**96:07****[CDSS]**V. I. Chilin, P. G. Dodds, F. A. Sukochev and A. A. Sedaev,*Characterisations of Kadec-Klee properties in symmetric spaces of measurable functions*, 1994. CMP**96:13****[CS1]**V. I. Chilin and F. A. Sukochev,*Measure convergence in regular non-commutative symmetric spaces*, Izv.VUZov (Matematika)**9**(1990), 63-70, (Russian); English translation: Soviet Math., vol.**34**, 1990, pp. (78-87). MR**92g:46081****[CS2]**V. I. Chilin and F. A. Sukochev,*Weak convergence in non-commutative symmetric spaces*, J. Operator Theory**31**(1994), 35-65. MR**96e:46085****[CKS]**V. I. Chilin, A. V. Krygin and F. A. Sukochev,*Extreme points of convex fully symmetric sets of measurable operators*, Integr. Equat. Oper. Th.**15**(1992), 186-226. MR**93g:46065****[DDDLS]**P. G. Dodds, T. K. Dodds, C. J. Lennard, P. Dowling and F. A. Sukochev,*A uniform Kadec-Klee property for symmetric operator spaces*, Math. Proc. Camb. Phil. Soc.**118**(1995), 487-502. MR**96h:46034****[DDP1]**P. G. Dodds, T. K. Dodds and B. de Pagter,*Non-commutative Banach function spaces*, Math. Z.**201**(1989), 583-597. MR**90j:46054****[DDP2]**P. G. Dodds, T. K. Dodds and B. de Pagter,*Non-commutative Köthe duality*, Trans. Amer. Math. Soc.**339**(1993), 717-750. MR**94a:46093****[DV]**D. van Dulst and V. de Valk,*-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces*, Can. J. Math.**38**(1986), 728-750. MR**87i:46049****[FK]**T. Fack and H. Kosaki,*Generalized s-numbers of -measurable operators*, Pacific J. Math.**123**(1986), 269-300. MR**87h:46122****[Hs]**Y. P. Hsu,*The lifting of the property from to*, preprint, 1993. MR**95k:46032****[KPS]**S. G. Krein, Ju. I. Petunin and E. M. Semenov,*Interpolation of linear operators, Translations of Mathematical Monographs*, Amer. Math. Soc.**54**(1982). MR**84j:46103****[LT]**J. Lindenstrauss and L. Tzafriri,*Classical Banach Spaces II*, Springer-Verlag, 1979. MR**81c:46001****[Se]**A. A. Sedaev,*On weak and norm convergence in interpolation spaces*, Trudy 6 zimney shkoly po mat. programm. i smezn. voprosam. Moscow (1975), 245-267, (Russian). MR**58:12426****[Si]**B. Simon,*Convergence in trace ideals*, Proc. Amer. Math. Soc.**83**(1981), 39-43. MR**82h:47042****[Su]**F. A. Sukochev,*On the uniform Kadec-Klee property with respect to convergence in measure*, J. Aust. Math. Soc. (Series A)**59**(1995), 343-352. MR**96h:46022****[Ta]**M. Takesaki,*Theory of Operator Algebras I*, Springer-Verlag, New York-Heidelberg, Berlin, 1979.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46L50,
46E30,
46B20,
47D15

Retrieve articles in all journals with MSC (1991): 46L50, 46E30, 46B20, 47D15

Additional Information

**P. G. Dodds**

Affiliation:
Department of Mathematics and Statistics, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia

Email:
peter@ist.flinders.edu.au

**T. K. Dodds**

Affiliation:
Department of Mathematics and Statistics, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia

Email:
theresa@ist.flinders.edu.au

**F. A. Sukochev**

Affiliation:
Department of Mathematics and Statistics, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia

Email:
sukochev@ist.flinders.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-97-03731-3

Keywords:
Kadec-Klee properties,
rearrangement-invariant spaces,
measurable operators,
submajorization

Received by editor(s):
June 2, 1995

Received by editor(s) in revised form:
November 27, 1995

Additional Notes:
Research supported by A.R.C

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society