Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

An intrinsic characterisation of polyhomogeneous Lagrangian distributions


Author: M. S. Joshi
Journal: Proc. Amer. Math. Soc. 125 (1997), 1537-1543
MSC (1991): Primary 58G15
MathSciNet review: 1371128
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to present a method of characterising polyhomogeneous Lagrangian distributions via testing by pseudo-differential operators. The concept of a radial operator for a Lagrangian submanifold is introduced, and polyhomogeneous Lagrangian distributions are shown to be the only Lagrangian distributions which are eigenfunctions at the top order for these operators.


References [Enhancements On Off] (What's this?)

  • 1. J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3-4, 183–269. MR 0388464 (52 #9300)
  • 2. Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 0388463 (52 #9299)
  • 3. Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035 (85g:35002a)
    Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278 (85g:35002b)
    Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536 (87d:35002a)
    Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR 781537 (87d:35002b)
  • 4. M.S. Joshi, A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.
  • 5. M.S. Joshi, A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint
  • 6. R.B. Melrose, Differential Analysis on Manifolds with Corners, forthcoming.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58G15

Retrieve articles in all journals with MSC (1991): 58G15


Additional Information

M. S. Joshi
Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England, United Kingdom
Email: joshi@pmms.cam.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9939-97-03737-4
PII: S 0002-9939(97)03737-4
Keywords: Lagrangian, polyhomogeneity, partial differential equations
Received by editor(s): September 20, 1995
Received by editor(s) in revised form: November 14, 1995
Additional Notes: This research forms part of my thesis research carried out at the Massachusetts Institute of Technology under the supervision of R.B. Melrose, and I would like to thank him for his guidance and advice.
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1997 American Mathematical Society