A NOTE ON THE RELATIVE CLASS NUMBER
IN FUNCTION FIELDS

MICHAEL ROSEN

(Communicated by William W. Adams)

Abstract. Let F be a finite field, $A = F[T]$, and $k = F(T)$. Let $K_m = k(\Lambda_m)$ be the field extension of k obtained by adjoining the m-torsion on the Carlitz module. The class number h_m of K_m can be written as a product $h_m = h_m^+ h_m^-$. The number h_m^- is called the relative class number. In this paper a formula for h_m^- is derived which is the analogue of the Maillet determinant formula for the relative class number of the cyclotomic field of p-th roots of unity. Some consequences of this formula are also derived.

Let \mathbb{Q} denote the rational numbers and consider the cyclotomic field $K_p = \mathbb{Q}(\zeta_p)$ with class number h_p. It is well known that this class numbers factors as a product $h_p^+ h_p^-$ of two integers. The number h_p^+ is the class number of the maximal real subfield of K_p. The integer h_p^- is called the relative class number. In [Ca] and [Ca-O] it is shown how the relative class number can be computed in terms of a certain classical determinant known as the Maillet determinant. A nice exposition of this is given in Chapter 3 of [L] (see Theorem 7.1).

In this note we will give an analogue of this material in the context of cyclotomic function fields. Let F be a finite field with q elements and $A = F[T]$ the polynomial ring over F. Let $k = F(T)$ be the quotient field of A. For an irreducible polynomial m of degree d we will denote by Λ_m the m-torsion on the Carlitz module and let $K_m = k(\Lambda_m)$ be the “cyclotomic” function field obtained by adjoining the elements of Λ_m to k. For the definition of the Carlitz module and its properties see [H] and [G-R]. The class number of K_m, h_m, factors as a product of two integers $h_m = h_m^+ h_m^-$, where h_m^+ is the class number of the “maximal real” subfield of K_m, i.e. the decomposition field of the prime at infinity of k in K_m, and h_m^- is called the relative class number. Our aim is to give an expression for h_m^- as a product of certain easily computed determinants related to the classical Maillet determinant.

We begin by recalling the analytic class number formula for h_m^- which follows immediately from Theorem 2 of [G-R]. A character χ of $(A/mA)^*$ is said to be real if its restriction to F^* is the trivial character. Otherwise it is said to be non-real or imaginary. If χ is imaginary, define $S(\chi) = \sum_a \chi(a)$, where the sum is over all monic polynomials of degree less than d. Then,

$$h_m^- = \prod_{\chi \text{ imaginary}} S(\chi).$$

Received by the editors July 2, 1995 and, in revised form, November 15, 1995.

1991 Mathematics Subject Classification. Primary 11R29; Secondary 11R58, 14H05.

This work was partially supported with a grant from the National Science Foundation.
Let $t = (q^d - 1)/(q - 1)$. Then t is the size of the set M of monic polynomials of degree less than d. We construct a $t \times t$ matrix $[c(a, b)]$ where $a, b \in M$. Namely, for $a, b \in M$ write $ab = sm + r$, where $s, r \in A$ and either $r = 0$ or $\deg(r) < d$. In fact, r cannot be zero since we have assumed that m is irreducible. Define $c(a, b)$ to be the leading coefficient of r. By construction, the matrix $[c(a, b)]$ has all its coefficients in F^*. Let λ be a character of F^* and define
\[
d(\lambda) = \det[\lambda(c(a, b))].\]

Theorem 1.

\[
h_{-m} = \pm \prod_{\lambda \neq \lambda_0} d(\lambda),
\]
where the product is over all the non-trivial characters λ of F^*.

Proof. The proof proceeds by a step by step rewriting of equation (1). Let λ be any non-trivial character of F^*, and set
\[
h_{\lambda} = \prod_{\chi |_{F^*} = \lambda} S(\chi).
\]
From equation (1) we see that
\[
h_{-m} = \prod_{\lambda \neq \lambda_0} h_{\lambda}.\tag{2}\]

Let ϕ be a fixed character whose restriction to F^* is λ. Then all the characters whose restriction to F^* is λ can be written $\phi\chi'$, where χ' is a real character. Note that a real character can also be thought of as a character of the group $G = (A/mA)^*/F^*$. We'll come back to this in a moment.

Starting with a non-trivial character λ on F^* we construct a function $\tilde{\lambda}$ on $(A/mA)^*$ as follows. Let a be a polynomial prime to m. Write $a = sm + r$ with $s, r \in A$ and $\deg(r) < d$. Define $\tilde{\lambda}(a)$ to be λ evaluated on the inverse of the leading coefficient of r. Then $\tilde{\lambda}$ is a well defined function on $(A/mA)^*$.

We rewrite h_{λ} using the quantities just defined:
\[
h_{\lambda} = \prod_{\chi |_{F^*} = \lambda} \sum_{a \text{ monic, } \deg(a) < d} \chi(a)
\]
\[
= \prod_{\chi' \text{ a monic, } \deg(a) < d} \chi'(a)\phi(a)\tilde{\lambda}(a).
\]
Observe that the function $\phi(a)\tilde{\lambda}(a)$ is unchanged if we replace a by αa where α is a constant. It is also unchanged if we replace a by anything in the congruence class of a modulo m. Thus the summation in the above sum can be rewritten as a summation over all the elements of the group $G = (A/mA)^*/F^*$. We obtain
\[
h_{\lambda} = \prod_{\chi' \in G} \sum_{a \in G} \chi'(a) \left[\phi(a)\tilde{\lambda}(a)\right].
\]
We apply the Dedekind determinant formula (see [L], Theorem 6.1) to derive
\[
h_{\lambda} = \det \left[\phi(b^{-1}a)\tilde{\lambda}(b^{-1}a)\right].
\]
Here, a and b vary over the elements of the group G. Replacing b^{-1} by b merely permutes the rows of the matrix, and so,

$$h_\lambda = \pm \det \left[\phi(b) \phi(a) \tilde{\lambda}(ba) \right].$$

We have used the fact that ϕ is a character. Each element of the b'th row of the determinant in equation (3) contains $\phi(b)$ as a factor. Similarly, each element of the a'th column contains $\phi(a)$ as a factor. By elementary properties of determinants, it follows that

$$h_\lambda = \pm \phi(\prod_{a \in G} a)^2 \det \left[\tilde{\lambda}(ab) \right].$$

The product of all the elements in an abelian group is equal to the product of all the elements of order two. Thus,

$$\phi(\prod_{a \in G} a)^2 = (\pm 1)^2 = 1,$$

and so,

$$h_\lambda = \pm \det \left[\tilde{\lambda}(ab) \right] = \pm d(\lambda^{-1}).$$

The last equality is obtained by letting a and b once again run through all the monic polynomials of degree less than d and simply using the definition of $\tilde{\lambda}$. From equations (2) and (4) the proof of the theorem is immediate.

I would like to thank David Goss for suggesting that the following result should hold.

Theorem 2. Let $[c(a, b)]$ be the matrix introduced in the remarks preceding Theorem 1. Then, the relative class number h_m^{-} is divisible by p, the characteristic of F, if and only if there is an integer i, $1 \leq i \leq q - 2$, such that $\det[c(a, b)^i] = 0$.

Proof. We have to reinterpret equation (2) first p-adically and then, after reduction mod p, as an equality in the ring A/mA.

Let ζ be a complex primitive $(q^d - 1)$st root of unity and set $E = Q(\zeta)$. Let \mathcal{O} be the ring of integers in E. E is unramified at all primes above p. Let \mathcal{P} be a fixed such prime and let $\tilde{\mathcal{O}}$ be the completion of \mathcal{O} at \mathcal{P}. Using the natural imbedding of \mathcal{O} in $\tilde{\mathcal{O}}$ we can (and do) interpret equation (2) as holding in $\tilde{\mathcal{O}}$. Now, the residue class field, κ, of $\tilde{\mathcal{O}}$ is a finite field with q^d elements and so is isomorphic to A/mA. Let $\rho : \kappa \rightarrow A/mA$ be such an isomorphism. Finally, let r denote reduction modulo \mathcal{P} on $\tilde{\mathcal{O}}$. Applying the composed map $\rho \circ r$ to both sides of equation (2), we see that p divides h_m^{-} if and only if $\rho \circ r(h_\lambda) = 0$ in A/mA for some complex character λ of F^*.

Let λ be any complex character of F^*, and define $\tilde{\lambda} = \rho \circ r \circ \lambda$. Then $\tilde{\lambda}$ is a character on F^* with values in the $(q - 1)$st roots of unity in $(A/mA)^*$, i.e. in F^*. It is easy to see that the multiplicative maps from F^* to itself consist of precisely the powers of the identity map under pointwise product. Now, apply the homomorphism $\rho \circ r$ to both sides of equation (4). We find

$$\rho \circ r(h_\lambda) = \pm d(\rho \circ r \circ \lambda^{-1}) = \pm \det(c(a, b)^i),$$

where i is some index between 1 and $q - 2$. This proves the theorem.
Remark 1. It is undoubtedly true that Theorem 2 can be refined so that the vanishing of $\det[c(a, b)]$ can be related to the p-divisibility of the order of the “ith piece” of the class group. See [G-S] for an explanation of how to decompose the class group into pieces corresponding to powers of the Teichmüller character. We shall not enter into this here.

As in [Ca], [Ca-O], and [L], it is possible to use Theorem 1 to give an upper bound for h_m^{-}.

Theorem 3. As above, let $m \in A$ be an irreducible polynomial of degree d and define $t = q^d - 1/(q - 1)$. We have

$$h_m^{-} \leq \sqrt{t}^{t(q-2)} < (2q)^{d-1}q^d. \quad (5)$$

Proof. We apply the Hadamard determinant inequality which states that the absolute value of the determinant of a complex square matrix is less than or equal to the product of the lengths of the row vectors which compose the matrix. Since all the entries of $[\lambda(c(a, b))]$ have absolute value 1, we find that $|d(\lambda)| \leq \sqrt{t}^t$. The first inequality follows from this and equation (2). As for the second inequality, note that the exponent $t(q-2) < q^d - 1 < q^d$. Also, note that $t = q^d - 1/(q - 1) < 2q^{d-1}$. These two observation yield the second inequality.

It is interesting to compare the inequalities of Theorem 3 with those obtained from the congruence Riemann hypothesis. Recall that $h_m^{-} = h_m/h_m^+$. It follows from the theory of algebraic curves over finite fields and the congruence Riemann hypothesis that there are complex numbers π_i of absolute value \sqrt{q} such that

$$h_m^{-} = \prod_{i=1}^{2g-2g^+} (1 - \pi_i). \quad (6)$$

Here, g, resp. g^+, is the genus of the field K_m, resp. K_m^+. The only primes of k which ramify in K_m are (m) and ∞. The prime (m) is totally ramified of degree d, whereas ∞ splits into t primes each with ramification index $q - 1$ and degree 1. By Riemann-Hurwitz one deduces that

$$2g - 2 = (d - 1)q^d + 1 - 2d - t.$$

See [H] for more details and the case of general m. In K_m^+ only (m) is ramified, and it is totally ramified. It follows that

$$2g^+ - 2 = (d - 2)t - d.$$

Subtracting these equations, we find that

$$2g - 2g^+ = (d - 1)q^d + O(q^{d-1}). \quad (7)$$

The error term is an explicit polynomial in q whose leading term is $(1 - d)q^{d-1}$, so for large d the error term makes a negative contribution.

Combining equations (6) and (7) and using the very coarse inequality $\sqrt{q} + 1 < 2\sqrt{q}$, we deduce that

$$h_m^{-} < (\sqrt{q} + 1)^{2g-2g^+} < (4q)^{g-g^+}. \quad (8)$$

Equations (7) and (8) yield

$$\log_q(h_m^{-}) < \left(1 + \frac{\log(4)}{\log q} \right) \frac{d - 1}{2} q^d + O(q^{d-1}).$$
whereas the elementary methods used in proving Theorem 3 (see equation (5)) give the result
\[
\log_q(h_m^-) < \left(1 + \frac{\log(2)}{\log(q)}\right) \frac{d-1}{2} q^d,
\]
which is surprisingly good.

We conclude with two more remarks.

Remark 2. Throughout this paper we have been concerned with the class numbers associated to the fields \(K_m\) and \(K_m^+\). It is also of interest to consider the class numbers of the rings \(O_m\) and \(O_m^+\) which are the integral closures of \(A\) in \(K_m\) and \(K_m^+\) respectively. Call these class numbers \(h(O_m)\) and \(h(O_m^+)\). It can be shown that the second of these numbers divides the first. Call the ratio \(h(O_m)^-\). This is the relative class number on the level of rings. The following relationship holds:
\[
h(O_m)^- = (q - 1)^{1-t} h_m^-.
\]
For a proof of this, in a more general setting, see [R].

The upshot is that Theorem 1 provides a formula for \(h(O_m)^-\) as well as \(h_m^-\). Also, Theorem 2 gives a criterion for \(p\)-divisibility of both of these numbers.

Remark 3. The “cyclotomic” construction of ray class fields of \(k = F(T)\) due to Carlitz has been extended to arbitrary global function fields by V.G. Drinfeld and D.R. Hayes. Using Hayes’ normalized rank one Drinfeld modules, L. Shu [S] has developed analytic class number formulas for the generalization of the relative class numbers \(h_m^-\). Using these, she is has been able to extend Theorems 1 and 2 to this setting. Her paper is in preparation.

References

Department of Mathematics, Brown University, Providence, Rhode Island 02912-0001

E-mail address: ma408000@brownvm.brown.edu