PEAK SET WITHOUT PEAK POINTS

KRZYSZTOF JAROSZ

(Communicated by Theodore W. Gamelin)

Abstract. We give an example of a natural Banach function algebra on the
unit disc such that a smaller disc is a peak set for the algebra, but it does not
contain any peak point.

A Banach function algebra on a compact Hausdorff space X is a Banach algebra
A consisting of continuous functions on X, such that A separates points of X and
contains the constant functions. If the norm of the algebra A coincides with the
sup norm on X, it is called a uniform algebra. If any linear and multiplicative
functional on A is of the form $f \mapsto f(x)$ for some $x \in X$, the algebra is called
natural. A subset K of X is a peak set for A if there is an $f \in A$ such that $f \equiv 1$
on K and $|f(x)| < 1$ for $x \notin K$; if $K = \{x_0\}$, then x_0 is a peak point. If no proper
subset of K is a peak set we call it a minimal peak set for A. It is well known [2]
that if A is a uniform algebra on a metrizable set X then any peak set contains a
peak point. In [1] H. G. Dales constructed a natural Banach function algebra on
a compact subset of C^2 having a peak set without any peak point. T. G. Honary
[3] provided an example in R^3, however his algebra is not natural. In this note we
give a very simple example of a natural Banach function algebra on the unit disc
with peak sets not containing any peak point.

Let K be an open nonempty subset of the complex plane C. By $C^1(K)$ we denote
the algebra of all bounded complex valued functions on K with continuous and
bounded first order partial derivatives on K. $C^1(K)$ is a Banach function algebra
on K if equipped with the norm

$$
\|f\| = \|f\|_\infty + \|f_x\|_\infty + \|f_y\|_\infty,
$$

where $\|\cdot\|_\infty$ is the sup norm. By $A(K)$ we denote the uniform algebra of all continuous functions on K which are analytic on K. We put $D_r = \{z \in C : |z| < r\}$ and $C_- = \{z : \text{Re } z < 0\}$.

Theorem 1. Let A be a subalgebra of $C^1(D_1)$ consisting of all functions which are
analytic on D_1. Then $D_{1/2}$ is a minimal peak set for A; in particular $D_{1/2}$ does not
contain any peak point.

Lemma 2. There is no $h \in A(D_1)$ such that $h(1) = 0$ and $|1 + (z - 1)h(z)| < 1$
for $z \neq 1$.

Proof of the lemma. Assume that such a function does exist. If we compose $1 + (z - 1)h(z)$ with a suitable fractional linear transformation we get an $f \in A(C_-)$

Received by the editors November 8, 1995.
1991 Mathematics Subject Classification. Primary 46J10.
such that \(f(z) = 1 + zg(z) \), \(g(0) = 0 \), and \(|f(z)| < 1 \) for \(z \in \mathbb{C} \setminus \{0\} \). Let \(\alpha \) be a positively oriented curve consisting of the segment from \(-i\) to \(+i\) and the half of the unit circle contained in \(\mathbb{C} \). We shall show that \(\gamma = g \circ \alpha \) has negative orientation, which will contradict the fact that \(g \) is analytic.

For any \(z \in \mathbb{C} \setminus \{0\} \) we have \(\Re g(z) < 0 \), so

- as \(z \) moves up from \(0 \) to \(+i\) along the curve \(\alpha \), \(\Im g(z) > 0 \),
- as \(z \) moves along the half circle of \(\alpha \), \(g(z) \) is in \(\mathbb{C} \setminus \{z : \Re z \leq 0, \ \Im z = 0\} \),
- as \(z \) moves from \(-i\) to \(0 \) on the vertical line, \(\Im g(z) < 0 \).

Consequently, if \(z_0 \) is a positive real number such that the segment \((0, z_0)\) does not intersect \(\gamma \), then the orientation of \(\gamma \) around \(z_0 \), as well as around any point from \((0, z_0)\), is negative.

\[\square \]

Proof of the theorem. It is well known that there is a \(C^1 \)-function, and even a \(C^\infty \)-function on \(\mathbb{D}_1 \), peaking exactly on \(\mathbb{D}^{\frac{1}{2}} \); thus \(\mathbb{D}^{\frac{1}{2}} \) is a peak set.

Assume \(\frac{1}{2} \) is a peak point for \(A \) and let \(f \in A \) be a function peaking at \(\frac{1}{2} \). Put \(u = \Re f, v = \Im f \). Since \(u^2 + v^2 \) has the maximum at \(\frac{1}{2} \), and \(u \left(\frac{1}{2} \right) = 1, v \left(\frac{1}{2} \right) = 0 \), it follows that \(u_x \left(\frac{1}{2} \right) = u_y \left(\frac{1}{2} \right) = 0 \). Since the partial derivatives are continuous, and \(f \) satisfies the Cauchy-Riemann equations on \(\mathbb{D}^{\frac{1}{2}} \), we get \(v_x \left(\frac{1}{2} \right) = v_y \left(\frac{1}{2} \right) = 0 \).

Hence

\[
g(z) = \frac{f(z) - 1}{z - \frac{1}{2}} \to 0, \quad \text{as} \quad z \to \frac{1}{2},
\]

so \(g \in A \left(\mathbb{D}^{\frac{1}{2}} \right) \), \(g \left(\frac{1}{2} \right) = 0 \), and \(f(z) = 1 + (z - \frac{1}{2}) g(z) \) has a strict maximum at \(\frac{1}{2} \).

This contradicts the lemma. Hence \(\mathbb{D}^{\frac{1}{2}} \) does not contain any peak point.

What remains to show is that \(\mathbb{D}^{\frac{1}{2}} \) does not contain any proper peak set. Assume \(K \subset \subset \mathbb{D}^{\frac{1}{2}} \) is a peak set and let \(F \in A \) be a corresponding function peaking on \(K \). Notice that \(K \) cannot contain the entire circle \(\partial \mathbb{D}^{\frac{1}{2}} \). Let \(z_0 \in K \cap \partial \mathbb{D}^{\frac{1}{2}} \) and \(z_1 \in \partial \mathbb{D}^{\frac{1}{2}} \setminus K \). For any \(w \in \partial \mathbb{D}^{\frac{1}{2}} \setminus \{z_0\} \) let \(\varphi_w \) be a \(C^1 \)-automorphism of \(\mathbb{D} \) mapping \(\mathbb{D}^{\frac{1}{2}} \) onto itself, analytic on \(\mathbb{D}^{\frac{3}{4}} \), and such that \(\varphi_w(z_0) = z_0 \) and \(\varphi_w(w) = z_1 \). Such an automorphism can be obtained by smoothly extending a suitable fractional linear automorphism of \(\mathbb{D}^{\frac{1}{2}} \). Sets of the form \(U_w = \left\{ z \in \mathbb{D}^{\frac{1}{2}} \setminus \{z_0\} : |F \circ \varphi_w(z)| < 1 \right\} \) form an open cover of \(\partial \mathbb{D}^{\frac{1}{2}} \setminus \{z_0\} \). Let \(\{w_1, w_2, \ldots\} \) be such that \(\bigcup_{j=1}^{\infty} U_{w_j} = \partial \mathbb{D}^{\frac{1}{2}} \setminus \{z_0\} \).

Put \(G = \sum_{j=1}^{\infty} \frac{F \circ \varphi_{w_j}}{\|F \circ \varphi_{w_j}\|} \). This function \(G \) belongs to \(A \) and peaks exactly at \(z_0 \), which contradicts the previous part of the proof.

\[\square \]

Notice that essentially the same proof can be repeated to provide a slightly more general example:

Let \(\Omega_j, j = 1, 2, \ldots \), be a sequence of open subsets of \(\mathbb{D}_1 \) such that for any \(j, \Omega_j \) has an open neighborhood contained in \(\mathbb{D}_1 \) not intersecting \(\bigcup_{i \neq j} \Omega_i \), and such that \(\partial \Omega_j \) is a union of finitely many smooth Jordan curves. Let \(A \) be a subalgebra of \(C^1(\mathbb{D}_1) \) consisting of all functions which are analytic on \(\bigcup \Omega_j \). Then for any \(j, \Omega_j \) is a peak set not containing any peak point.

However, it is not clear whether the result can be further extended to Swiss cheese type domains to provide an example of a natural Banach function algebra where the union of all nontrivial minimal peak sets is dense in the unit disc. The
difficulty, in general, is not in proving that \(\Omega_j \) does not contain any peak point, but in proving that \(\overline{\Omega_j} \) is a peak set.

References

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

Current address: Department of Mathematics & Statistics, Southern Illinois University, Edwardsville, Illinois 62026

E-mail address: kjarosz@siue.edu