Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



New rapidly convergent series representations for $\zeta (2n+1)$

Authors: Djurdje Cvijovic and Jacek Klinowski
Journal: Proc. Amer. Math. Soc. 125 (1997), 1263-1271
MSC (1991): Primary 11M99; Secondary 33E20
MathSciNet review: 1376755
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give three series representations for the values of the Riemann zeta function $\zeta (s)$ at positive odd integers. One representation extends Ewell's result for $\zeta (3)$ [Amer. Math. Monthly 97 (1990), 219-220] and is considerably simpler than the two generalisations proposed earlier. The second representation is even simpler:

\begin{displaymath}\zeta (2n+1)=(-1)^n\frac {4(2\pi )^{2n}}{(2n+1)!}\sum _{k=0}^\infty R_{2n+1,k}\zeta (2k),\qquad n\ge 1,\end{displaymath}

where the coefficients $R_{2n+1,k}$ for a fixed $n$ are rational in $k$ and are explicitly given by the finite sum involving the Bernoulli numbers. The third representation is obtained from the second by the Kummer transformation. We demonstrate the rapid convergence of this series using several examples.

References [Enhancements On Off] (What's this?)

  • 1. W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, Berlin, 1966. MR 38:1291
  • 2. S. Ramanujan, Notebooks of Srinivasa Ramanujan (2 vols.), Tata Institute of Fundamental Research, Bombay, 1957. MR 20:6340
  • 3. B. Berndt, Rocky Mountain J. Math. 7 (1977), 147-189. MR 55:2714
  • 4. B. Berndt, Ramanujan's Notebooks, Part II, Springer, New York, 1989.
  • 5. R. Apéry, Astérisque 61 (1979), 11-13.
  • 6. H. Cohen, Bull. Soc. Math. France 109 (1981), 269-281. MR 84a:10036
  • 7. A. J. Van der Poorten, Mat. Intelligencer 1 (1979), 195-203. MR 80i:10054
  • 8. D. Leshchiner, J. Number Theory 13 (1981), 355-362. MR 83k:10072
  • 9. P. L. Butzer, C. Markett and M. Schmidt, Resultate Math. 19 (1991), 257-274. MR 92a:11095
  • 10. J. A. Ewell, Amer. Math. Monthly 97 (1990), 219-220. MR 91d:11103
  • 11. J. A. Ewell, Canad. Math. Bull. 34 (1991), 60-66. MR 92c:11087
  • 12. Z. N. Yue and K. S. Williams, Rocky Mountain J. Math. 23 (1993), 1581-1592. MR 94m:11099
  • 13. J. A. Ewell, Rocky Mountain J. Math. 25 (1995), 1003-1012. CMP 96:03
  • 14. J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere Publishing Corporation, Washington, 1987.
  • 15. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 3, Gordon and Breach, New York, 1990.MR 91c:33001
  • 16. K. Knopp, Theory and Application of Infinite Series, Blackie and Son Limited, London, 1928.
  • 17. P. L. Butzer and M. Hauss, Atti Sem. Mat. Fis. Univ. Modena 40 (1992), 329-359. MR 93h:11095
  • 18. J. R. Wilton, Messenger Math. 52 (1922-1923), 90-93.
  • 19. H. Tsumura, J. Number Theory 48 (1994), 383-391. MR 96a:11083

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11M99, 33E20

Retrieve articles in all journals with MSC (1991): 11M99, 33E20

Additional Information

Djurdje Cvijovic
Affiliation: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Jacek Klinowski
Affiliation: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Keywords: Riemann zeta function, series representations, rapidly convergent series.
Received by editor(s): November 2, 1995
Communicated by: Hal L. Smith
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society