A NEW PROOF OF THE TWO WEIGHT NORM INEQUALITY FOR THE ONE-SIDED FRACTIONAL MAXIMAL OPERATOR

DAVID CRUZ-URIBE, SFO

(Communicated by J. Marshall Ash)

Abstract. We give a new proof of the two weight norm inequality for the one-sided, fractional maximal operator, simplifying the original proof of Martín-Reyes and de la Torre.

1. Introduction

In [1], Andersen and Sawyer introduced the one-sided fractional maximal operators

\[M^+_\alpha f(x) = \sup_{t > 0} \frac{1}{t^{1-\alpha}} \int_{x+t}^{x} |f| \, dy \quad \text{and} \quad M^-_\alpha f(x) = \sup_{t > 0} \frac{1}{t^{1-\alpha}} \int_{x-t}^{x} |f| \, dy, \]

0 < \alpha < 1, in order to study the weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators. Using complex interpolation, they proved one-weight norm inequalities for \(M^+_{\alpha} \) and \(M^-_{\alpha} \). In [3], Martín-Reyes and de la Torre answered a question of Andersen and Sawyer by giving a geometric proof of a two-weight norm inequality for \(M^+_{\alpha} \). (The same result holds, \textit{mutatis mutandis}, for \(M^-_{\alpha} \).)

Theorem 1.1. For non-negative weights \(u \) and \(v \), and for \(1 < p \leq q \), the following are equivalent:

1. There exists a constant \(C \) such that, for every function \(f \) in \(L^p(v) \),

\[\left(\int_{\mathbb{R}} (M^+_{\alpha} f)^q u \, dx \right)^{1/q} \leq C \left(\int_{\mathbb{R}} |f|^p v \, dx \right)^{1/p}; \]

2. The pair \((u, v)\) satisfy the \((S^+_{p,q,\alpha}) \) condition: there exists a constant \(C \) such that for every interval \(I = [a,b] \) for which \(u((-\infty, a)) > 0 \),

\[\left(\int_I (M^+_{\alpha} (\sigma \chi_I))^q u \, dx \right)^{1/q} \leq C \left(\int_I \sigma \, dx \right)^{1/p} < \infty, \]

where \(\sigma = v^{1-p'} \).

Received by the editors August 29, 1995 and, in revised form, October 25, 1995 and November 16, 1995.

1991 Mathematics Subject Classification. Primary 42B25.

Key words and phrases. One-sided fractional maximal operator, weighted norm inequalities.
Their proof involved proving a weighted norm inequality for a dyadic variant of the fractional maximal operator, M_{α}^f, using a dyadic version of the Sawyer condition, $(S_{p,\alpha}^+ D)$, and then showing that these were equivalent to M_{α}^+ and $(S_{p,\alpha}^+)$. The purpose of this paper is to give a new proof of Theorem 1.1, one which eliminates the dyadic maximal operator. We do this by adapting the proof in the dyadic case using special covering properties of \mathbb{R} and the continuity properties of the maximal operator. We believe that these techniques will be useful in proving other norm inequalities for maximal operators on \mathbb{R}.

The paper is organized as follows: Section 2 contains three lemmas and some remarks on their applicability, and Section 3 contains the actual proof. Throughout, all functions are assumed to be measurable, C denotes a positive constant whose value may be different at each appearance, $p' = p/(p-1)$ is the conjugate exponent of p, and $0 < \alpha < 1$. Given a Borel set E and a function w, let $|E|$ denote the Lebesgue measure of E and $w(E) = \int_E w \, dx$.

2. Preliminary results

Lemma 2.1. Let f be a non-negative, bounded, upper semicontinuous function of compact support. Then $M_{\alpha}^+ f$ is continuous.

Proof. Since $M_{\alpha}^+ f$ is always lower semicontinuous, it will suffice to show that it is upper semicontinuous at each point $x \in \mathbb{R}$. We will show this by contradiction: suppose that there exist an $\epsilon > 0$, a point x_0 and a sequence of points $\{x_n\}$ converging to x_0 such that $M_{\alpha}^+ f(x_n) > M_{\alpha}^+ f(x_0) + \epsilon$. For each n there exists an interval J_n whose left endpoint is x_n such that

$$\frac{1}{|J_n|^{1-\alpha}} \int_{J_n} |f| \, dx > M_{\alpha}^+ f(x_0) + \epsilon. \tag{1}$$

Let the support of f be contained in the (finite) interval I, and let K be a finite, open interval containing I and the x_n’s, $n \geq 0$. Then we may assume that each J_n is contained in K. Therefore, after passing to a subsequence we may assume that the J_n’s converge to a possibly degenerate interval J whose left endpoint is x_0. If $|J| > 0$ then inequality (1) implies that

$$M_{\alpha}^+ f(x_0) \geq \frac{1}{|J|^{1-\alpha}} \int_J |f| \, dx \geq M_{\alpha}^+ f(x_0) + \epsilon,$$

a contradiction. If $J = \{x_0\}$ then for n sufficiently large, by the upper semicontinuity of f, $f(x) - f(x_0) < \epsilon$ for all $x \in J_n$. Therefore,

$$\frac{1}{|J_n|^{1-\alpha}} \int_{J_n} f(x) \, dx < |J_n|^{\alpha} (f(x_0) + \epsilon) .$$

If we combine this with inequality (1) and take the limit as n tends to infinity, we get (since f is bounded) that $0 \geq M_{\alpha}^+ f(x_0) + \epsilon$, which is again a contradiction. Hence $M_{\alpha}^+ f$ is upper semicontinuous at each point, and we are done.

It is worth noting that this lemma is not true if $\alpha = 0$. A simple counter-example is given by the characteristic function of $[0, 1]$. (I am grateful to Juha Kinnunen for pointing this out to me.)

The next lemma is due to Jesus Aldaz; the proof is in Bliedtner and Loeb [2].
Lemma 2.2. If \(\mu \) is a finite Borel measure on \(\mathbb{R} \), and if \(\mathcal{I} \) is an arbitrary collection of non-degenerate intervals, then for each \(\delta > 0 \) there exists a finite subcollection, \(\mathcal{I}_\delta \), of disjoint intervals in \(\mathcal{I} \) such that

\[
\mu\left(\bigcup_{I \in \mathcal{I}} I \right) \leq (2 + \delta) \sum_{I_k \in \mathcal{I}_\delta} \mu(I_k).
\]

Below we will want to apply Lemma 2.2 with the measure \(u \, dx \), where \((u,v)\) satisfies the \((S_{p,q}^+) \) condition. To do this, we need \(u \) to be locally integrable and the intervals to be contained in some compact set. However, if \(I = [a,b] \) is an interval such that \(u((-\infty,a)) > 0 \), and if there exists an interval \(J = [b,c] \) such that \(\sigma(J) > 0 \), then for all \(x \in I \),

\[
M_+^+(\sigma \chi_{I \cup J})(x) \geq \sigma(J)/(c-a)^{1-\alpha}.
\]

Hence, by the \((S_{p,q}^+) \) condition applied to \(I \cup J \),

\[
u(I) \leq C \sigma(I)^{1/p} (c-a)^{1-\alpha}/\sigma(J) < \infty.
\]

If no such \(J \) exists, then \(\sigma \equiv 0 \) on \([b,\infty)\), so \(v \equiv \infty \) on the same set. But if \(f \in L^p(v) \), then \(f \equiv 0 \) on \([b,\infty)\).

Below, we will apply Lemma 2.2 to closed intervals contained in an open set \(O_k \).

In \(O_k \), \(M_+^+ f > 0 \), so \(f \) cannot be identically zero to the right of these intervals. Further, by the definition of \(O_k \), \(u \) is not identically zero to the left of these intervals. Finally, since we will also be assuming that \(f \) has compact support, the intervals will be contained in some compact set. Hence Lemma 2.2 is applicable.

The last lemma is an extension of a result of Muckenhoupt [4] for Lebesgue measure. The proof of the extension is identical to his proof and so is omitted.

Lemma 2.3. Let \(\mu \) be a Borel measure, \(f \) a function, and \(\{I_\beta\} \) a collection of intervals, all contained in some interval \(I \), with the property that

\[
\int_{I_\beta} f \, d\mu \geq N \mu(I_\beta).
\]

If \(J = \bigcup_\beta I_\beta \) then

\[
\int_J f \, d\mu \geq (N/2) \mu(J).
\]

If \((u,v)\) satisfy the \((S_{p,q}^+) \) condition, then \(\sigma \, dx = v^{1-p} \, dx \) is a Borel measure.

3. Proof of Theorem 1.1

To show that the \((S_{p,q}^+) \) condition is necessary for inequality (1) of Theorem 1.1 to hold, first suppose that there is some interval \(I = [a,b] \) such that \(u((-\infty,a)) > 0 \) but \(\sigma(I) = \infty \). Equivalently, the function \(v^{-1} \chi_I \) is not in \(L^p(v) \), so there exists a function \(f \) in \(L^p(v) \) such that

\[
\infty = \int_I f v^{-1} \chi_I \, dx = \int_I f \, dx.
\]

Then for all \(x \in J \), \(M_+^+ f(x) = \infty \), which contradicts inequality (1). The rest of the \((S_{p,q}^+) \) condition follows if we substitute \(f = \sigma \chi_I \) into the norm inequality.

To prove that the \((S_{p,q}^+) \) condition is sufficient, we follow the outline of the proof of Martín-Reyes and de la Torre [3], which in turn is based on a proof by Sawyer [6]. Let \(f \) be in \(L^p(v) \); we will first consider the special case where \(f \) is a non-negative,
bounded, upper semicontinuous function of compact support. By Lemma 2.1, $M^+_\alpha f$ is continuous. Further, since the set $\{x : M^+_\alpha f(x) = \lambda\}$ has positive measure for at most a countable number of λ, by multiplying f by a suitable constant we may assume without loss of generality that the sets $\{x : M^+_\alpha f(x) = 2^k\}$ have measure zero for all integers k.

Let $a = \sup\{x : u((-\infty, x)) = 0\}$. For each integer k define the set $O_k = \{x : 2^k < M^+_\alpha f(x) < 2^{k+1}\} \cap (a, \infty)$. Since $M^+_\alpha f$ is continuous, it follows that each O_k is open, and the set $\mathbb{R} \setminus \bigcup_k O_k$ has measure zero. For each $x \in O_k$, there exists an open interval $J_{x,k} = (x, t_x)$ such that

\[
2^k < \frac{1}{|J_{x,k}|^{1-\alpha}} \int_{J_{x,k}} f \, dy < 2^{k+1}.
\]

(2)

We claim that there exists a point $s_x \in J_{x,k}$ such that if $y \in I_{x,k} = [x, s_x]$ then

\[
\frac{1}{|J_{x,k}|^{1-\alpha}} \int_{J_{x,k}} \sigma \, dy \leq 2M^+\alpha(\sigma \chi_{J_{x,k}})(y).
\]

(3)

If $M^+_\alpha(\sigma \chi_{J_{x,k}})(x) = 0$ then this is immediate. If it is positive, then since $M^+_\alpha(\sigma \chi_{J_{x,k}})$ is lower semicontinuous, we can find s_x such that $M^+_\alpha(\sigma \chi_{J_{x,k}})(y)$ is also positive for $y \in I_{x,k}$. By the continuity of the integral, the desired inequality holds if we take s_x sufficiently close to x. Finally, since O_k is open we may take s_x so that $I_{x,k} \subset O_k$.

The union of the $I_{x,k}$’s is O_k. Therefore, by Lemma 2.2 and the remarks following it, there exists a finite, disjoint collection of intervals $\{I_{j,k}\}_{j=1}^{n_k}$ such that

\[
u(O_k) \leq 3 \sum_{j=1}^{n_k} \nu(I_{j,k}).
\]

(4)

Since the sets O_k are disjoint, the intervals $I_{j,k}$ are pairwise disjoint for all j and k.

Using inequalities (2) and (4), we can now make the following estimate:

\[
\int_{\mathbb{R}} (M^+_\alpha f)^q u \, dx = \sum_k \int_{O_k} (M^+_\alpha f)^q u \, dx \\
\leq \sum_k \nu(O_k) 2^{q(k+1)} \\
\leq C \sum_{j,k} \nu(I_{j,k}) 2^{qk} \\
\leq C \sum_{j,k} \nu(I_{j,k}) \left(\frac{1}{|J_{j,k}|^{1-\alpha}} \int_{J_{j,k}} f \, dx \right)^q \\
= C \sum_{j,k} \nu(I_{j,k}) \left(\frac{1}{|J_{j,k}|^{1-\alpha}} \int_{J_{j,k}} \sigma \, dx \right)^q \left(\frac{\int_{J_{j,k}} (f/\sigma) \cdot \sigma \, dx}{\int_{J_{j,k}} \sigma \, dx} \right)^q \left(\int_{J_{j,k}} \sigma \, dx \right)^q
\]

Define the measure ω on $X = \mathbb{N} \times \mathbb{Z}$ by

\[
\omega(j,k) = u(I_{j,k}) \left(\frac{1}{|J_{j,k}|^{1-\alpha}} \int_{J_{j,k}} \sigma \, dx \right)^q
\]
if \(j \leq n_k \) and \(\omega(j, k) = 0 \) if \(j > n_k \). Also define the operator \(T \) by

\[
T h(j, k) = \frac{\int_{J_{j,k}} |h| \sigma \, dx}{\int_{J_{j,k}} \sigma \, dx}.
\]

Then, following the argument of Sawyer, to get the desired norm inequality it will suffice to show that \(T \) is a bounded operator from \(L^p(\sigma) \) into \(L^q(X, \omega) \). Since \(T \) is bounded on \(L^\infty \), by Marcinkiewicz interpolation it will suffice to show that \(T \) is weak-type \((1, q/p)\): that is, for each \(\lambda > 0 \)

\[
\sum_{(j,k) \in E_\lambda} u(I_{j,k}) \left(\frac{1}{|J_{j,k}|^{1-\alpha}} \int_{J_{j,k}} \sigma \, dx \right)^q \leq C \left(\frac{1}{\lambda} \int_{\mathbb{R}} |h| \sigma \, dx \right)^{q/p},
\]

where \(E_\lambda = \{(j,k) \in X : T h(j, k) > \lambda \} \). If \((j,k) \in E_\lambda \), then

\[
\int_{J_{j,k}} |h| \sigma \, dx > \lambda \int_{J_{j,k}} \sigma \, dx.
\]

Let \(G_\lambda \) be the union of all such \(J_{j,k} \)'s. Then, since the \(J_{j,k} \)'s are open, \(G_\lambda \) is the union of a countable number of disjoint open intervals \(J_i \). By Lemma 2.3, for each \(i \)

\[
\int_{J_i} |h| \sigma \, dx > \frac{\lambda}{2} \int_{J_i} \sigma \, dx. \tag{5}
\]

Since \(I_{j,k} \subset J_{j,k} \), each \(I_{j,k} \) is contained in exactly one interval \(J_i \). (Here we ignore the left endpoints of the \(I_{j,k} \)'s since they form a set of measure zero.) Therefore, by inequalities (3) and (5) and the \((S^+_{p,q,\alpha}) \) condition, since \(q/p \geq 1 \), and since the \(I_{j,k} \)'s and the \(J_i \)'s are disjoint,

\[
\sum_{(j,k) \in E_\lambda} u(I_{j,k}) \left(\frac{1}{|J_{j,k}|^{1-\alpha}} \int_{J_{j,k}} \sigma \, dx \right)^q \leq 2 \sum_{(j,k) \in E_\lambda} \int_{I_{j,k}} M^+_\alpha(\sigma \chi_{J_{j,k}})^q u \, dx
\]

\[
\leq 2 \sum_{(j,k) \in E_\lambda} \sum_{I_{j,k} \subset J_i} \int_{I_{j,k}} M^+_\alpha(\sigma \chi_{J_i})^q u \, dx
\]

\[
\leq 2 \sum_i \int_{J_i} M^+_\alpha(\sigma \chi_{J_i})^q u \, dx
\]

\[
\leq C \sum_i \left(\int_{J_i} \sigma \, dx \right)^{q/p}
\]

\[
\leq C \sum_i \left(\frac{1}{\lambda} \int_{J_i} |h| \sigma \, dx \right)^{q/p}
\]

\[
\leq C \left(\frac{1}{\lambda} \int_{\mathbb{R}} |h| \sigma \, dx \right)^{q/p}.
\]

This completes the special case. To complete the proof, take any \(f \in L^p(v) \); then by the Vitali-Carathéodory theorem, there exists an increasing sequence \(\{f_n\} \) of non-negative, bounded, upper semicontinuous functions of compact support which converge to \(|f| \). (See, for example, Rudin [5, p. 57].) By the monotone convergence theorem, \(M^+_\alpha f_n \) increases pointwise to \(M^+_\alpha f \). Therefore, again by the monotone
convergence theorem,

\[
\left(\int_{\mathbb{R}} (M_\alpha^+ f)^q u \, dx \right)^{1/q} = \lim_{n \to \infty} \left(\int_{\mathbb{R}} (M_\alpha^+ f_n)^q u \, dx \right)^{1/q} \\
\leq \lim_{n \to \infty} C \left(\int_{\mathbb{R}} f_n^p v \, dx \right)^{1/p} \\
= C \left(\int_{\mathbb{R}} |f|^p v \, dx \right)^{1/p}.
\]

ACKNOWLEDGMENT

I want to thank F. Martín-Reyes and A. de la Torre for their hospitality, and my wife Gabrielle for her patient generosity; without either this paper would not have been possible.

REFERENCES

DEPARTMENT OF MATHEMATICS, TRINITY COLLEGE, HARTFORD, CONNECTICUT 06106-3100
E-mail address: david.cruzuribe@mail.trincoll.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use