Entire Solutions of First-Order Nonlinear Partial Differential Equations

Jill E. Hemmati

Abstract. We show that any entire solution of an essentially nonlinear first-order partial differential equation in two variables must be linear.

In this paper we consider complex-analytic solutions to some nonlinear first-order partial differential equations. Let \(F(p, q) \) be an entire function in \(p, q \). Suppose the zero set of \(F \) contains a complex line, i.e., \(F(p, q) = (p + aq + b)S(p, q) \), where \(a, b \in \mathbb{C} \) and \(S \) is an entire function. In this case, the partial differential equation \(F(u_x, u_y) = 0 \), \((x, y) \in \mathbb{C}^2 \), has many entire solutions in \(\mathbb{C}^2 \), for example,

\[
 u(x, y) = -\frac{b}{2}x - \frac{b}{2a}y + f\left(x - \frac{y}{a}\right),
\]

where \(f \) is any entire function of one variable. However, if \(F(p, q) \) does not have a linear factor, then the entire solutions in \(\mathbb{C}^2 \) are completely characterized by the following:

Theorem. Let \(u \) be an entire solution in \(\mathbb{C}^2 \) of \(F(u_x, u_y) = 0 \), where \(F \) is an entire function whose zero set \(\{(p, q) \in \mathbb{C}^2 : F(p, q) = 0\} \) does not contain any complex lines, i.e., \(F \) does not have a linear factor. Then \(u(x, y) \) is a linear function.

Proof. Let \(p = u_x \), \(q = u_y \), and \(z = u(x, y) \). Assume that \(u \) is not linear, i.e. \(u_x \) and \(u_y \) are not both constant. According to a corollary of the Weierstrass preparation theorem, we can factor \(F \) into irreducible (nonlinear) factors, since the ring of germs of holomorphic functions is a unique factorization domain (see [6]). Thus, we may assume that \(F \) is irreducible, and we can find \((x_0, y_0) \in \mathbb{C}^2 \) such that \(\text{grad} \ F(p(x, y), q(x, y)) \neq 0 \) while \(F(p(x, y), q(x, y)) = 0 \), for \((x, y) \) near \((x_0, y_0) \). Without loss of generality, we can assume that \(F_q(p(x, y), q(x, y)) \neq 0 \) near \((x_0, y_0) \). The Hamilton-Jacobi equations for the characteristics (cf. [3]) are

\[
 \frac{dx}{dt} = F_p(p, q), \quad \frac{dy}{dt} = F_q(p, q), \quad \frac{dz}{dt} = pF_p(p, q) + qF_q(p, q), \quad \frac{dp}{dt} = \frac{dq}{dt} = 0.
\]

By taking the initial curve \(\Gamma : x(s, y_0) = s, y(s, y_0) = y_0 \), with data \(z(s, y_0) = f(s) \), where \(f(s) \) is an entire function, we can complete it into a characteristic strip by choosing \(p(s, y_0) = f'(s) \) and \(q(s, y_0) = g(f'(s)) \), where \(g \) solves \(F(p, g(p)) = 0 \).
Then the characteristics with initial elements on \(\Gamma \) are given by
\[
x(s, t) = F_p(f'(s), g(f'(s)))t + s, \\
y(s, t) = F_q(f'(s), g(f'(s)))t + y_0, \\
z(s, t) = [f'(s)F_p(f'(s), g(f'(s))) + g(f'(s))F_q(f'(s), g(f'(s)))]t + f(s).
\]
(1) Thus, the characteristics are complex lines with slope \(F \) does not have a linear factor, the implicit function \(g(p) \) does not have constant derivative. Thus, \(\frac{F_p}{F_q}(f'(s), g(f'(s))) \), which is an analytic function of \(s \), is not constant near \(s = x_0 \), provided \(f'(s) \) is not constant. In this case, we must have
\[
\frac{F_p}{F_q}(f'(s_1), g(f'(s_1))) \neq \frac{F_p}{F_q}(f'(s_2), g(f'(s_2))), \quad f'(s_1) \neq f'(s_2) \text{ for some } s_1, s_2.
\]
This would imply that the two characteristics passing through \((s_1, y_0), (s_2, y_0)\) intersect, and hence at some point \((x_1, y_1), u_x(x_1, y_1) = p(x_1(s, t), y_1(s, t)) = f'(s_1)\) and \(u_x(x_1, y_1) = f'(s_2)\). This is impossible since \(u_x\) is an entire function, and hence must be single valued. Therefore, \(f'(s) \equiv \text{constant}, f(s) \text{ is linear, and by (1) we have that } u(x, y) \text{ is linear, which contradicts our assumption.} \)

Remarks. (1) Our argument can be extended to include any holomorphic function \(F \) that does not have any linear pseudoprime factors.

(2) An example of an equation of this type is the eiconal equation in two variables
\[
u_x^2 + u_y^2 - 1 = 0.
\]
This particular case was treated in [5].

(3) The theorem fails in higher dimensions. Indeed, consider (cf. [5]) \(u(x, y, z) = z + f(x + y) \) which solves \(u_x^2 - u_y^2 + u_z - 1 = 0 \). However, for some equations, for example the eiconal equation, the theorem stays true in all dimensions if one only considers real-valued solutions (see [5, 7, 12]).

(4) The following noteworthy corollary was communicated to us by Professor P. Ebenfelt.

Corollary. Let \(u(x, y) \) be a nonlinear entire function in \(\mathbb{C}^2 \). If the image of \(\mathbb{C}^2 \) under the gradient map \(\nabla : (x, y) \mapsto (u_x(x, y), u_y(x, y)) \) lies in an irreducible algebraic variety \(V \), then \(V \) must be a complex line.

(5) Our theorem seems to be very close in flavor to the celebrated theorem of S. Bernstein ([1, 2, 4, 8, 9, 10, 11]) that an entire solution of the minimal surface equation in two variables must be linear. It seems worthwhile to pursue this connection further.

I am grateful to Professor D. Khavinson for helping me prepare this paper, and Professor P. Ebenfelt for his valuable suggestions.

References

Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701