NONSTANDARD MODELS
AND ANALYTIC EQUIVALENCE RELATIONS

SY D. FRIEDMAN AND BOBAN VELICKOVIC

(Communicated by Andreas R. Blass)

Abstract. We improve a result of Hjorth concerning the nature of thin analytic equivalence relations. The key lemma uses a weakly compact cardinal to construct certain nonstandard models, which Hjorth obtained using #'s.

The purpose of this note is to improve the following result of Hjorth [2].

Theorem (Hjorth). Suppose that for every real \(x \), \(x^\# \) exists. Let \(E \) be an analytic equivalence relation, \(\Sigma^1_1 \) in parameter \(x_0 \). Then either there exists a perfect set of pairwise \(E \)-inequivalent reals or every \(E \)-equivalence class has a representative in a set-generic extension of \(L[x_0] \).

Hjorth’s proof makes use of his analysis of nonstandard Ehrenfeucht-Mostowski models built from #’s. Instead, we construct the necessary nonstandard models using infinitary model theory, assuming only the existence of weak compacts.

Theorem 1. Suppose that for every real \(x \) there is a weakly compact cardinal in \(L[x] \). Then the conclusion of Hjorth’s Theorem still holds.

The main lemma is the following.

Lemma 2. Suppose that there is a weakly compact cardinal in \(L[x] \), \(x \) a real. Then there is a countable nonstandard \(\omega \)-model \(M_x \) of \(ZF \) such that \(x \in M_x \) and \(L(M_x) = (L \text{ in the sense of } M_x) \) has an isomorphic copy in a set-generic extension of \(L[x_0] \), for any real \(x_0 \).

It is not known if the conclusion of Lemma 2 holds in \(ZFC \) alone, for arbitrary \(x \) (with \(ZF \) replaced by an arbitrary finite subtheory).

Proof of Theorem 1 from Lemma 2 (as in Hjorth [2]). Suppose that \(E \) is an analytic equivalence relation, \(\Sigma^1_1 \) in the parameter \(x_0 \), and choose an \(x_0 \)-recursive tree \(T \) on \(\omega \times \omega \times \omega^\omega \) such that \(xEy \iff T(x, y) \) has a branch. For each countable ordinal \(\alpha \) we define \(xE_\alpha y \iff \text{rank}(T(x, y)) \) is at least \(\alpha \); then \(E_\alpha \) is Borel in \((x_0, c) \) where \(c \) is any real coding \(\alpha \) and \(E \) is the intersection of the \(E_\alpha \)’s. We may assume that each \(E_\alpha \) is an equivalence relation (see Theorem 1.4 of Hjorth [2]). A theorem of Harrington and Silver says that a \(\Pi^1_1 \)-equivalence relation has a perfect set of pairwise inequivalent reals or each equivalence class has a representative constructible from the parameter defining the relation. As \(E_\alpha \) is Borel in \((x_0, c) \) where \(c \) is a...
real coding α, and as we may assume that E and hence each E_α has no perfect set of pairwise inequivalent reals, we know that each E_α-equivalence class has a representative in $L[x_0, c]$ where c is any real coding α.

Now let x be arbitrary and by Lemma 2 choose a countable nonstandard ω-model M_x of ZF containing (x_0, x) such that $L(M_x)$ has an isomorphic copy in a set-generic extension N of $L[x_0]$. Let $a \in \text{ORD}(M_x)$ be nonstandard and let c be a code for a, generic over M_x; then by applying Harrington-Silver in $M_x[c]$ we conclude that there is y in $L(M_x)[x_0, c]$ such that $y E_\alpha x$. By choosing c to be generic over N as well we get that y belongs to a set-generic extension of $L[x_0]$. Finally, $yE_\alpha x$ since, if not, $y E_\alpha x$ would fail for some α admissible in (y, x) and hence for some (standard) $\alpha < a$.

To prove Lemma 2 we discuss infinitary logic. Fix a real x and assume $V = L[x]$. Let κ be weakly compact and introduce the language L consisting of the formulas in the language of set theory with constants a for $a \in L_\kappa[x]$, closed under conjunctions and disjunctions of size less than κ (however we allow a formula to have only finitely many free variables). Let T be the theory of $(L_\kappa[x], a)$, $a \in L_\kappa[x]$, in this language. An n-type is a set of formulas Γ with free variables $v_1 \ldots v_n$, and such a Γ is consistent with T if there is a model of T and $n_1 \ldots n_m$ in M such that $M |= \varphi(m_1 \ldots m_n)$ for each $\phi \in \Gamma$, where M exists in a set-generic extension of $V = L[x]$. Γ is complete if for every $\varphi(v_1 \ldots v_n)$ either φ or $\sim \varphi$ belongs to Φ.

Now work in the Lévy collapse $L[x, c]$, where c is a real coding κ^+ of $L[x]$. Let d_1, d_2, \ldots be ω-many new constant symbols and for $D \subseteq \{d_1, d_2, \ldots\}$ let the language L_D be defined like L but with the new constant symbols from D. Define $T_0 = T \subseteq T_1 \subseteq \ldots$ and $T_D = \phi \subseteq D_1 \subseteq D_2 \subseteq \ldots$ inductively as follows: if T_n, D_n have been defined select a complete k-type $\Gamma_n(v^\bar{v})$ in $L[x]$ consistent with T_n, choose $D_n \subseteq D_{n+1}$ so that $\text{card}(D_{n+1} - D_n) = k$, and let $T_{n+1} = T_n \cup \Gamma_n(\bar{d})$, where \bar{d} enumerates $D_{n+1} - D_n$. This can be done in such a way that $T_n = T^*$ is $L[x]$-saturated: if $\Gamma(v^\bar{v})$ is an $L[x]$-type, \bar{d} a finite sequence from D, and $\Gamma(\bar{d}, \bar{e})$ consistent with T^*, then T^* includes $\Gamma(\bar{d}, \bar{c})$ for some \bar{c}. And note that each T_n belongs to $L[x]$ (though of course T^* itself makes use of the Lévy collapse c).

Let M_x be the model determined by T^*, whose universe consists of (equivalence classes of) the constants $d_n, n \in \omega$. Note that a set in $L[x]$ of sentences in some L_D is consistent iff each subset of $L[x]$-cardinality $< \kappa$ is, by Π_1-reflection and the equivalence of consistency with existence of a model after performing a Lévy collapse of κ. An easy consequence is that M_x is nonstandard with standard ordinal κ.

Now consider $L(M_x)$: every n-type in the language $L_0 = (L$ as L but restricted to L_κ) that is realized in $L(M_x)$ belongs to L, as each of its initial segments (obtained by restricting to some $L_\alpha, \alpha < \kappa$) belongs to L and κ is weakly compact. Also, just as M_x is saturated for types in $L[x]$, $L(M_x)$ is saturated for types in L, since again by weak compactness any L_0-type in L consistent with T can be extended to a complete \mathcal{L}-type consistent with T in $L[x]$.

Now it is clear that $L(M_x)$ has an isomorphic copy in $L[c]$: using c we can do the same construction as we did above in $L[x, c]$, obtaining M_0, a model that is saturated for L_0-types in L and realizing only types in L. Now construct an isomorphism via a back and forth argument in ω steps between M_0 and $L(M_x)$.

Finally, note that by absoluteness the desired model M_x exists not only in $L[x, c]$ but in $L[x]$.

Remark. Lemma 2 can also be used to establish the following improvement of the Glimm-Effros style dichotomy theorem of Hjorth and Kechris [3]: Let E be a Σ^1_1 equivalence relation. Assume that for every real x there is a weakly compact cardinal in $L[x]$. Then either E_0 is continuously reducible to E, or E is reducible to $2^{<\omega_1}$ by a function Δ^1_2 in the codes.

References

Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
E-mail address: sdf@math.mit.edu

Equipe de Logique, University of Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
E-mail address: boban@logique.jussieu.fr