Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Iteration of compact holomorphic maps
on a Hilbert ball


Authors: Cho-Ho Chu and Pauline Mellon
Journal: Proc. Amer. Math. Soc. 125 (1997), 1771-1777
MSC (1991): Primary 46G20, 32A10, 32A17; Secondary 32M15
DOI: https://doi.org/10.1090/S0002-9939-97-03761-1
MathSciNet review: 1372026
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a compact holomorphic fixed-point-free self-map, $f$, of the open unit ball of a Hilbert space, we show that the sequence of iterates, $(f^n)$, converges locally uniformly to a constant map $\xi $ with $\Vert \xi \Vert = 1$. This extends results of Denjoy (1926), Wolff (1926), Hervé (1963) and MacCluer (1983). The result is false without the compactness assumption, nor is it true for all open balls of $J^{*}$-algebras.


References [Enhancements On Off] (What's this?)

  • 1. M. Abate, Iteration theory, compactly divergent sequences and commuting holomorphic maps, Ann. della Scuola Normale Superiore di Pisa 18 (1991) 67-191. MR 93e:32034a
  • 2. R. B. Burckel, Iterating analytic self-maps of discs, Amer. Math. Monthly 88 (1981) 396-407. MR 82g:30046
  • 3. A. Denjoy, Sur l'itération des fonctions analytiques, C. R. Acad. Sc. Paris 182 (1926) 255-257.
  • 4. S. Dineen, ``The Schwarz lemma'', Oxford Univ. Press, Oxford, 1989. MR 91f:46064
  • 5. C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, Proc. Symposia Pure Math 16 (1969) 61-65. MR 42:918
  • 6. M. P. Fatou, Sur l'équations fonctionnelles, Bull. Soc. Math. France 47 (1919) 161-271.
  • 7. M. P. Fatou, Sur l'équations fonctionnelles, Bull. Soc. Math. France 48 (1920) 22-94 and 208-314.
  • 8. K. Goebel, Fixed points and invariant domains of holomorphic mappings of the Hilbert ball, Nonlinear Analysis 6 (1982) 1327-1334. MR 84j:58027
  • 9. K. Goebel and S. Reich, ``Uniform convexity, hyperbolic geometry and nonexpansive mappings'', Marcel Dekker, 1984. MR 86d:58012
  • 10. K. Goebel and S. Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan. Acad. 58 (1982) 349-352. MR 84b:47065
  • 11. L. A. Harris, A generalization of $C^{*}$-algebras, Proc. London Math. Soc. 42 (1981) 331-361. MR 82e:46089
  • 12. T. L. Hayden and T. J. Suffridge, Biholomorphic maps in Hilbert space have a fixed point, Pacific J. Math. 38 (1971) 419-422. MR 46:4288
  • 13. M. Hervé, Quelques propriétés des applications analytiques d'une boule à $m$ dimensions dans elle-meme, J. Math. Pures et Appl. 42 (1963) 117-147. MR 28:3177
  • 14. G. Julia, Mémoire sur l'itération des fonctions rationnelles, J. Math. Pures et Appl. 8 (1918) 47-245.
  • 15. B. D. MacCluer, Iterates of holomorphic self-maps of the open unit ball in $\mathbb {C}^n$, Michigan Math J. 30 (1983) 97-106. MR 85c:32047a
  • 16. P. Mellon, Another look at results of Wolff and Julia type for $J^{*}$-algebras, J. Math. Anal. Appl. 198 (1996) 444-457. CMP 96:08
  • 17. W. Rudin, ``Function theory in the unit ball of $\mathbb {C}^n\>$'', Springer, New York, 1980. MR 82i:32002
  • 18. A. Stachura, Iterates of holomorphic self-maps of the unit ball in Hilbert space, Proc. Amer. Math. Soc. 93 (1985) 88-90. MR 86b:47117
  • 19. H. Upmeier, ``Symmetric Banach manifolds and Jordan $C^{*}$-algebras'', North-Holland, 1985. MR 87a:58022
  • 20. E. Vesentini, Iteration of holomorphic maps, Russ. Math. Survey 40 (1985) 7-11.
  • 21. J. P. Vigué, Sur le groupe des automorphismes analytiques d'un ouvert borné d'un espace de Banach complexe, C. R. Acad. Sc. Paris 278 (1974) 617-620. MR 49:3230
  • 22. J. P. Vigué, Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe, application aux domaines bornés symétriques, Ann. Sc. Ec. Norm. Sup. 9 (1976) 203-282. MR 55:3340
  • 23. J. Wolff, Sur l'itération des fonctions bornées, C. R. Acad. Sc. Paris 182 (1926) 42-43 and 200-201.
  • 24. J. Wolff, Sur une généralisation d'un théorème de Schwarz, C. R. Acad. Sc. Paris 182 (1926) 918-920 and 183 (1926) 500-502.
  • 25. K. W{\l}odarczyk, Julia's lemma and Wolff's theorem for $J^{*}$-algebras, Proc. Amer. Math. Soc. 99 (1987) 472-476. MR 88a:46049

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46G20, 32A10, 32A17, 32M15

Retrieve articles in all journals with MSC (1991): 46G20, 32A10, 32A17, 32M15


Additional Information

Cho-Ho Chu
Affiliation: Goldsmiths College, University of London, London SE14 6NW, England
Email: maa01chc@gold.ac.uk

Pauline Mellon
Affiliation: Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland
Email: pmellon@irlearn.ucd.ie

DOI: https://doi.org/10.1090/S0002-9939-97-03761-1
Received by editor(s): December 27, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society