Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized numerical ranges, joint positive definiteness and multiple eigenvalues


Author: Yiu Tung Poon
Journal: Proc. Amer. Math. Soc. 125 (1997), 1625-1634
MSC (1991): Primary 15A60; Secondary 47A12
DOI: https://doi.org/10.1090/S0002-9939-97-03781-7
MathSciNet review: 1372044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a convexity theorem on a generalized numerical range that combines and generalizes the following results: 1) Friedland and Loewy's result on the existence of a nonzero matrix with multiple first eigenvalue in subspaces of hermitian matrices, 2) Bohnenblust's result on joint positive definiteness of hermitian matrices, 3) the Toeplitz-Hausdorff Theorem on the convexity of the classical numerical range and its various generalizations by Au-Yeung, Berger, Brickman, Halmos, Poon, Tsing and Westwick.


References [Enhancements On Off] (What's this?)

  • [ALP] J. F. Adams, P. D. Lax and R. S. Phillips, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965), 318-322. MR 31:3432
  • [A1] Y. H. Au-Yeung, A simple proof of the convexity of the field of values defined by two hermitian forms, Aequations Math. 12 (1975), 82-83. MR 51:3200
  • [A2] -, Some results on generalized numerical ranges and related topics, Current trends in matrix theory (F. Uhlig and R. Grone, eds.), North-Holland, New York, 1987, pp. (23-28). MR 88f:15041
  • [AP] Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definiteness concerning hermitian matrices, Southeast Asian Bull. Math. 3 (1979), 85-92. MR 81c:15026
  • [AT1] Y. H. Au-Yeung and N. K. Tsing, Some theorems on the generalized numerical ranges, Linear and Multilinear Algebra 15 (1984), 3-11. MR 85c:15039
  • [AT2] -, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), 215-218. MR 85f:15021
  • [Be] C. A. Berger, Normal dilations, Ph. D. Thesis, Cornell Univ., 1963.
  • [Bo] F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
  • [Br] L. Brickman, On the field of values of a matrix, Proc. Amer. Math. Soc. 12 (1961), 61-66. MR 23:A160
  • [D] Doyle, Analysis of feedback systems with structured uncertainties, Proc. IEEE-D 129 (1982), 242-250. MR 84a:93035
  • [FT] M. K. H. Fan and A. L. Tits, m-form numerical range and the computation of the structured singular value, IEEE Trans. Automat. Control 33 (1988), 284-289. MR 89b:93051
  • [FL] S. Friedland and R. Loewy, Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue, Pacific J. Math. 62 (1976), 389-399. MR 54:2698
  • [Hal1] P. Halmos, Numerical ranges and normal dialtions, Acta Sci. Math. (Szeged) 25 (1964), 1-5. MR 30:1399
  • [Hal2] -, A Hilbert space problem book, Von Nostrand, New York, 1967. MR 34:8178
  • [HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, London, 1934.
  • [Hau] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314-316.
  • [Ho] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630. MR 16:105c
  • [HJ] R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985. MR 87e:15001
  • [Le] H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish. Acad. Sect. A 52 (1949), 253-260. MR 12:153i
  • [Li] C. K. Li, Matrices with some extremal properties, Linear Algebra Appl. 101 (1988), 255-267. MR 89c:15025
  • [MO] A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Academic Press, New York, 1979. MR 81b:00002
  • [P1] Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), 35-37. MR 81h:15015
  • [P2] -, On the convex hull of the multiform numerical range, Linear and Multilinear Algebra 37 (1994), 221-223. MR 95j:15022
  • [Ta] O. Taussky, Positive definite matrices, Inequalities I (O. Shisha, eds.), Academic Press, New York, 1965. MR 36:3806
  • [Th] R. C. Thompson, Singular values, diagonal elements and convexity, SIAM J. Appl. Math. 32 (1977), 39-63. MR 54:12805
  • [To] O. Toeplitz, Das algebraishe Analogon zu einem Satze von Fejér, Math. Z. 2 (1918), 187-197.
  • [W] R. Westwick, A theorem on numerical range, Linear and Multilinear Algebra 2 (1975), 311-315. MR 51:11132

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 15A60, 47A12

Retrieve articles in all journals with MSC (1991): 15A60, 47A12


Additional Information

Yiu Tung Poon
Email: ytpoon@iastate.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03781-7
Keywords: Generalized numerical range, convexity, joint positive definiteness, multiple eigenvalue
Received by editor(s): September 22, 1995
Received by editor(s) in revised form: January 4, 1996
Additional Notes: The author wants to thank the referee for some helpful comments and suggestions.
Dedicated: Dedicated to Professor Yik Hoi Au-Yeung
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society