Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Non-existence and uniqueness results
for boundary value problems
for Yang-Mills connections

Author: Takeshi Isobe
Journal: Proc. Amer. Math. Soc. 125 (1997), 1737-1744
MSC (1991): Primary 35J50, 58E15, 81T13
MathSciNet review: 1376764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show uniqueness results for the Dirichlet problem for Yang-Mills connections defined in $n$-dimensional ($n\ge 4$) star-shaped domains with flat boundary values. This result also shows the non-existence result for the Dirichlet problem in dimension 4, since in 4-dimension, there exist countably many connected components of connections with prescribed Dirichlet boundary value. We also show non-existence results for the Neumann problem. Examples of non-minimal Yang-Mills connections for the Dirichlet and the Neumann problems are also given.

References [Enhancements On Off] (What's this?)

  • 1. N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order, J. Math. Pures Appl. 36 (1957), 235-249. MR 19:1056c
  • 2. A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. MR 89c:35053
  • 3. H. Brezis, Elliptic equations with limiting Sobolev exponents-The impact of topology, Comm. Pure Appl. Math. 39 (1986), S17-S39. MR 87k:58272
  • 4. T. Isobe and A. Marini, On topologically distinct solutions to the Dirichlet problem for Yang-Mills connections (to appear).
  • 5. H. T. Laquer, Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. J. 31 (1984), 139-159. MR 88a:58047
  • 6. L. Lemaire, Applications harmoniques de surfaces Riemanniennes, J. Diff. Geom. 13 (1978), 51-78. MR 80h:58024
  • 7. A. Marini, Dirichlet and Neumann boundary value problems for Yang-Mills connections, Comm. Pure Appl. Math. 45 (1992), 1015-1050. MR 93k:58059
  • 8. R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30. MR 81c:58026
  • 9. T. Parker, Non-minimal Yang-Mills fields and dynamics, Invent. Math. 107 (1992), 397-420. MR 93b:58037
  • 10. S. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965), 1408-1411.
  • 11. P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta. Math. 43 (1983), 131-166. MR 84m:58033
  • 12. C. H. Taubes, Self-dual connections on non self-dual 4-manifolds, J. Diff. Geom. 17 (1982), 139-170. MR 83i:53055
  • 13. -, Self-dual connections on 4-manifolds with indefinite intersection matrix, J. Diff. Geom. 19 (1984), 517-560. MR 86b:53025
  • 14. -, Unique continuation theorems in gauge theories, Comm. Anal. Geom. 2 (1994), 35-52. MR 95j:58032
  • 15. K. Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42. MR 83e:53035
  • 16. H. Urakawa, Equivariant theory of Yang-Mills connections over Riemannian manifolds of cohomogeneity one, Indiana Univ. Math. J. 37 (1988), 753-788. MR 90h:53033
  • 17. H. Wente, The differential equation $\Delta x=2Hx_{u}\wedge x_{v}$ with vanishing boundary values, Proc. Amer. Math. Soc. 50 (1975), 131-137. MR 51:10871

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35J50, 58E15, 81T13

Retrieve articles in all journals with MSC (1991): 35J50, 58E15, 81T13

Additional Information

Takeshi Isobe
Affiliation: Department of Mathematics, Faculty of Science, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan

Keywords: Yang-Mills, boundary value problems, non-existence, uniqueness
Received by editor(s): December 8, 1995
Communicated by: Ronald Stern
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society