Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Estimating a skein module with $SL_2(\mathbb C)$ characters


Author: Doug Bullock
Journal: Proc. Amer. Math. Soc. 125 (1997), 1835-1839
MSC (1991): Primary 57M99
DOI: https://doi.org/10.1090/S0002-9939-97-03943-9
MathSciNet review: 1403115
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new technique for estimating the number of generators of the Kauffman bracket skein module of a three manifold; one which requires the construction of linear functionals on a simpler version of the module. Of particular interest is the use of representations of the fundamental group into $SL_2(\hspace {-.3pt}{\mathbb C}\hspace {.3pt})$ to generate the functionals.


References [Enhancements On Off] (What's this?)

  • 1. J. W. Barrett, Skein spaces and spin structures, preprint.
  • 2. D. Bullock, The $(2,\infty )$-skein module of the complement of a $(2,2p+1)$ torus knot, J. Knot Theory Ramifications, 4 no. 4 (1995) 619-632. CMP 96:04
  • 3. -, On the Kauffman bracket skein module of surgery on a trefoil, Pacific J. Math., to appear.
  • 4. M. Culler and P. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. Math., 117 (1983) 109-146. MR 84k:57005
  • 5. J. Hoste and J. H. Przytycki, The $(2,\infty )$-skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theory Ramifications, 2 no. 3 (1993) 321-333. MR 95b:57010
  • 6. -, The Kauffman bracket skein module of $S^{1} \times S^{2}$, Math Z., 220 (1995) 65-73. MR 96f:57006
  • 7. L. Kauffman, State models and the Jones polynomial, Topology, 26 no. 3 (1987) 395-401. MR 88f:57006
  • 8. J. H. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci., 39(1-2) (1991) 91-100. MR 94g:57011

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M99

Retrieve articles in all journals with MSC (1991): 57M99


Additional Information

Doug Bullock
Email: bullock@math.idbsu.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03943-9
Keywords: Knot, link, 3-manifold, skein module, group characters
Received by editor(s): December 1, 1995
Communicated by: Ronald Stern
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society