Harmonic 2-spheres

with pairs of extra eigenfunctions

Author:
Motoko Kotani

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2083-2092

MSC (1991):
Primary 49F10; Secondary 58E20

DOI:
https://doi.org/10.1090/S0002-9939-97-03771-4

MathSciNet review:
1372035

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, deformations of harmonic 2-spheres in the unit -sphere respecting the degree are studied. The limit maps of such deformations are characterized as harmonic maps with extra eigenfunctions. The space of harmonic 2-spheres in with fixed degree is described in terms of such deformations and the limit maps.

**[B]**J.L.M.Barbosa,*On minimal immersions of into*, Trans.Amer.Math.Soc.**210**(1975), 75-105. MR**51:11362****[BW1]**J.Bolton and L.M.Woodward,*Moduli spaces of harmonic 2-spheres*, Geometry and Topology of Submanifolds IV, World Scientific, 1992, pp. 143-151. MR**93g:58035****[BW2]**J.Bolton and L.M.Woodward,*The space of harmonic maps of into*, Geometry and Global Analysis, Report of the first MSJ International Research Institute, Tôhoku University, 1993, pp. 165-173. MR**96k:58053****[Ca]**E. Calabi,*Minimal immersions of surfaces in Euclidean spheres*, J. Diff. Geom.**1**(1976), 111-125. MR**38:1616****[Cr]**T.A.Crawford,*The space of harmonic maps from the 2-spheres to complex projective space*, preprint, McGill University., 1993.**[E1]**N.Ejiri,*Minimal deformation of a nonfull minimal surface in*, Compositio.Math.**90**(1994), 183-209. MR**95a:53098****[E2]**N.Ejiri,*The boundary of the space of full harmonic maps of into and extra eigenfunctions*, in preparation.**[EK1]**N.Ejiri and M.Kotani,*Index and flat ends of minimal surfaces*, Tokyo J. Math.**16**(1993), 37-48. MR**94g:53003****[EK2]**N.Ejiri and M.Kotani,*Minimal surfaces in with extra eigenfunctions*, Quart. J. Math.**43**(1992), 421-440. MR**93k:53061****[FGKO]**M.Furuta, M.A.Guest , M.Kotani and Y.Ohnita,*On the fundamental group of the space of harmonic 2-spheres in the n-sphere*, Math. Z.**215**(1994), 503-518. MR**95e:58047****[GMO]**M.A.Guest, M.Mukai and Y.Ohnita,*On the topology of spaces of harmonic 2-spheres in symmetric spaces*, in preparation.**[GO]**M.A.Guest and Y.Ohnita,*Group actions and deformation for harmonic maps*, J. Math. Soc. Japan**45**(1993), 671-704. MR**94m:58058****[K]**M.Kotani,*Connectedness of the space of minimal 2-spheres in*, Proc. Amer. Math. Soc.**120**(1994), 803-810. MR**94e:58033****[L]**B.Loo,*The space of harmonic maps of into*, Trans. Amer. Math. Soc.**313**(1989), 81-103. MR**90k:58050****[M1]**M.Mukai,*On connectedness of the space of harmonic 2-spheres in quaternionic projective spaces*, to appear, Tokyo J.Math..**[M2]**M.Mukai,*On connectedness of the space of harmonic 2-spheres in real Grassmann manifolds of 2-planes*, Natur.Sci.Reo.Ochanomizu Univ.**44**(1993), 99-115. MR**95a:58031****[V]**J.L.Verdier,*Two dimensional models and harmonic maps from to*, Lecture Notes in Physics, vol. 180, Berlin, Springer, 1983, p. 136-141.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
49F10,
58E20

Retrieve articles in all journals with MSC (1991): 49F10, 58E20

Additional Information

**Motoko Kotani**

Affiliation:
Department of Mathematics, Faculty of Sciences, Toho University, Funabashi, Chiba, 274, Japan

Email:
kotani@tansei.cc.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-97-03771-4

Keywords:
Harmonic 2-spheres,
extra eigenfunctions,
null curves

Received by editor(s):
October 24, 1995

Received by editor(s) in revised form:
February 1, 1996

Communicated by:
Peter Li

Article copyright:
© Copyright 1997
American Mathematical Society