Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point property and normal structure
for Banach spaces
associated to locally compact groups


Authors: Anthony To-ming Lau, Peter F. Mah and Ali Ülger
Journal: Proc. Amer. Math. Soc. 125 (1997), 2021-2027
MSC (1991): Primary 43A10, 43A15, 46B20, 47H09, 22D10; Secondary 54G12
DOI: https://doi.org/10.1090/S0002-9939-97-03773-8
MathSciNet review: 1372037
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we investigate when various Banach spaces associated to a locally compact group $G$ have the fixed point property for nonexpansive mappings or normal structure. We give sufficient conditions and some necessary conditions about $G$ for the Fourier and Fourier-Stieltjes algebras to have the fixed point property. We also show that if a $C^{*}$-algebra $\mathfrak {A}$ has the fixed point property then for any normal element $a$ of $\mathfrak {A}$, the spectrum $\sigma (a)$ is countable and that the group $C^{*}$-algebra $C^{*}(G)$ has weak normal structure if and only if $G$ is finite.


References [Enhancements On Off] (What's this?)

  • 1. A. Aksoy and M. A. Khamsi, Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990. MR 91i:47073
  • 2. D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424. MR 82j:47070
  • 3. L. Baggett and K. Taylor, Groups with completely regular reducible representation, Proc. Amer. Math. Soc. 72 (1978), 596-600. MR 80b:22009
  • 4. A. B\v{e}langer and B.E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group. (to appear). MR 96f:22005
  • 5. R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Math., vol. 993, Springer-Verlag, New York, 1983. MR 85d:46023
  • 6. F. E. Browder, Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U. S. A. 54 (1965), 1041-1044. MR 32:4574
  • 7. C. H. Chu, A note on scattered $C^{*}$-algebras and the Radon-Nikodym property, J. London Math. Soc. 24 (1981), 533-536. MR 82k:46086
  • 8. D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type ($KK$), Banach space theory and its applications, Bucharest, 1981, Lectures Notes in Math., vol. 991, Springer-Verlag, New York. MR 84i:46027
  • 9. P. Eymard, L'al[?`?]gebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37:4208
  • 10. N. Ghousoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Memoirs Amer. Math. Soc. 378 (1987). MR 89h:46024
  • 11. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Spring-Verlag, 1969. MR 43:428
  • 12. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. MR 82b:46016
  • 13. T. Huruya, A spectral characterization of a class of $C^{*}$-algebra, Sci. Rep. Niigata Univ. Ser. A 15 (1978), 21-24. MR 58:2322
  • 14. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. MR 32:6436
  • 15. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, New York, 1974. MR 58:12308
  • 16. A. T. Lau and P. F. Mah, Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc. 310 (1988), 341-353. MR 89e:43004
  • 17. A. T. Lau and A. Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), 321-359. MR 93g:22007
  • 18. C. Lennard, $\mathcal {C}_{1}$ is uniformly Kadec-Klee, Proc. Amer. Math. Soc. 109 (1990), 71-77. MR 90h:46029
  • 19. B. Maurey, Points fixes des contractions sur convexe forme de $L^{1}$, Seminaine d'Analyse Functionnelle 80-81 Ecole Polytechnique.
  • 20. T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. of Math. 8 (1973), 683-741. MR 81j:22003
  • 21. A. Pelczynski and Z. Semedani, Spaces of continuous functions III, Studia Math. 18 (1959), 211-222. MR 21:6528
  • 22. S. Sakai, $C^{*}$-algebras and $W^{*}$-algebras, Springer-Verlag, New York, 1971. MR 56:1082
  • 23. K. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic representations, Math. Ann. 262 (1983), 183-190. MR 84h:43020

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A10, 43A15, 46B20, 47H09, 22D10, 54G12

Retrieve articles in all journals with MSC (1991): 43A10, 43A15, 46B20, 47H09, 22D10, 54G12


Additional Information

Anthony To-ming Lau
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1

Peter F. Mah
Affiliation: Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada, P7B 5E1
Email: pfmah@cs-acad-lan.lakeheadu.ca

Ali Ülger
Affiliation: Department of Mathematics, Koc University, 80860-Istinye, Istanbul, Turkey
Email: aulger@ku.edu.tr

DOI: https://doi.org/10.1090/S0002-9939-97-03773-8
Keywords: Locally compact groups, Fourier and Fourier-Stieltjes algebras, group algebra, $C^{*}$-algebra, fixed point property, weak-normal structure, uniformly Kadec-Klee property, Radon Nikodym property
Received by editor(s): August 29, 1995
Received by editor(s) in revised form: January 19, 1996
Additional Notes: The first author’s research was supported by an NSERC grant and the third author’s research was supported by TUBA
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society