Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A change of variables formula
for mappings in $\mathbf {BV}$


Authors: Rustum Choksi and Irene Fonseca
Journal: Proc. Amer. Math. Soc. 125 (1997), 2065-2072
MSC (1991): Primary 26B10, 26B30, 49Q20
DOI: https://doi.org/10.1090/S0002-9939-97-03793-3
MathSciNet review: 1376753
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A change of variables formula for mappings in $BV$ is obtained, where the usual jacobian is replaced by the determinant of the approximate differential.


References [Enhancements On Off] (What's this?)

  • 1. Alberti, G. A Lusin type theorem for gradients. J. Funct. Anal. 100 (1991), 110-118. MR 92g:26018
  • 2. Ambrosio, L. On the lower semicontinuity of quasiconvex integrals in $SBV(\Omega , \mathbb {R}^k )$. Nonlinear Analysis Vol. 23, No. 3 (1994), 405-425. MR 95f:49011
  • 3. Ambrosio, L. and G. Dal Maso. A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), 691-702. MR 90j:26019
  • 4. Buttazzo, G. Energies on $BV$ and variational models in fracture mechanics. Preprint Dip. Mat. Univ. Pisa (1994).
  • 5. Choksi, R. and I. Fonseca. Bulk and Interfacial Energy Densities for Structured Deformations of Continua. To appear in Arch. Rat. Mech. Anal.
  • 6. De Giorgi, E and L. Ambrosio. Un nuovo tipo di funzionale del calculo delle vari azioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. MR 92j:49043
  • 7. Evans, L. C. and R. F. Gariepy. Measure Theory and Fine Properties of Functions, CRC Press, 1992. MR 93f:28001
  • 8. Fonseca, I. and G. Francfort. Relaxation in $BV$ versus quasiconvexification in $W^{1,p}$; a model for the interaction between fracture and damage. Calc. Var. 4 (1995), 407-446. CMP 96:11
  • 9. Fonseca, I. and W. Gangbo. Degree Theory in Analysis and Applications. Oxford Univ. Press, 1995. MR 96k:47100
  • 10. Giaquinta, M., G. Modica and J. Sou[??]cek. Area and the Area Formula. Rend. Sem. Mat. Fis. Milano LXII (1992), 53-87. MR 95g:49079
  • 11. Morgan, F. Geometric Measure Theory: A Beginners Guide. Academic Press, Boston, 1988. MR 89f:49036
  • 12. Stein, E. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970.
  • 13. Ziemer, W. P. Weakly Differentiable Functions. Springer-Verlag, Berlin, 1989. MR 91e:46046

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26B10, 26B30, 49Q20

Retrieve articles in all journals with MSC (1991): 26B10, 26B30, 49Q20


Additional Information

Rustum Choksi
Affiliation: Courant Institute, New York University, New York, New York 10012
Email: choksi@cims.nyu.edu

Irene Fonseca
Affiliation: Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
Email: fonseca@andrew.cmu.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03793-3
Keywords: Functions of bounded variation, maximal function, approximate differential
Received by editor(s): December 1, 1995
Received by editor(s) in revised form: January 30, 1996
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society