Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Formulae and continuity for the index
of subfactors


Authors: Sergey Dorofeev and Klaus Thomsen
Journal: Proc. Amer. Math. Soc. 125 (1997), 2007-2011
MSC (1991): Primary 46L37
DOI: https://doi.org/10.1090/S0002-9939-97-03797-0
MathSciNet review: 1376757
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $N \subset M$ be an inclusion of $II_{1}$-factors, $\tau $ the trace state of $M$, and $\mathcal {P}(M)$, $\mathcal {P}(N)$ the set of projections in $M$ and $N$, respectively. We prove that the Jones index for the inclusion is

\begin{equation*}\begin {split} [M : N ]&= sup_{e \in \mathcal {P}(M) \backslash \{0\}} \ inf_{p \in \mathcal {P}(N) \backslash \{0\}} \ \frac {\tau (p)}{\tau (ep)}\\ &=sup_{e \in \mathcal {P}(M) \backslash \{0\}} \ inf \{ \frac {\tau (p)}{\tau (ep)} : p \in \mathcal {P}(N), \ e \preceq p \} \ . \end {split}\end{equation*}

This formula is exploited to obtain continuity results for the index. In particular, we obtain a formula for the index which expresses $[M:N]$ in terms of the positions of $N_{i}$ and $M_{j} , \ i,j \in \mathbb {N}$, in $M$, when $N_{1} \subset N_{2} \subset N_{3} \subset \cdots $ and $M_{1} \subset M_{2} \subset M_{3} \subset \cdots $ are finite-dimensional $C^{\ast }$-subalgebras with dense union in $N$ and $M$, respectively.


References [Enhancements On Off] (What's this?)

  • [DT] S. Dorofeev, K. Thomsen, Factors and subfactors arising from inductive limits of interval algebras, Preprint, Aarhus, 1996.
  • [J] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1 - 25. MR 84d:46097
  • [MT] B. Mashhood, K.F. Taylor, On the continuity of the Index of Subfactors of a Finite Factor, J. Functional Analysis 76 (1988), 56-66. MR 89h:46090
  • [PP] M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole. Norm. Sup. 19 (1986), 57-106. MR 87m:46120

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L37

Retrieve articles in all journals with MSC (1991): 46L37


Additional Information

Sergey Dorofeev
Affiliation: Matematisk Institut, Ny Munkegade, 8000 Aarhus C, Denmark
Email: dorofeev@mi.aau.dk

Klaus Thomsen
Affiliation: Matematisk Institut, Ny Munkegade, 8000 Aarhus C, Denmark
Email: matkt@mi.aau.dk

DOI: https://doi.org/10.1090/S0002-9939-97-03797-0
Received by editor(s): January 16, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society