Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



When do two rational functions
have the same Julia set?

Authors: G. Levin and F. Przytycki
Journal: Proc. Amer. Math. Soc. 125 (1997), 2179-2190
MSC (1991): Primary 58F23
MathSciNet review: 1376996
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that non-exceptional rational functions $f$ and $g$ on the Riemann sphere have the same measure of maximal entropy iff there exist iterates $F$ of $f$ and $G$ of $g$ and natural numbers $M,N$ such that

\begin{equation*}(G^{-1}\circ G)\circ G^{M} = (F^{-1}\circ F) \circ F^{N}.\tag {$*$} \end{equation*}

If one assumes only that $f,g$ have the same Julia set and no singular or parabolic domains of normality for the iterates, one also proves $(*)$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F23

Retrieve articles in all journals with MSC (1991): 58F23

Additional Information

G. Levin
Affiliation: Institute of Mathematics, Hebrew University, 91904 Jerusalem, Israel

F. Przytycki
Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warsaw, Poland

Received by editor(s): January 27, 1995
Received by editor(s) in revised form: February 9, 1996
Additional Notes: The preprint version of this paper has the title Rational maps, common Julia sets, functional equations.
Communicated by: Mary Rees
Article copyright: © Copyright 1997 American Mathematical Society