Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

When do two rational functions have the same Julia set?
HTML articles powered by AMS MathViewer

by G. Levin and F. Przytycki PDF
Proc. Amer. Math. Soc. 125 (1997), 2179-2190 Request permission

Abstract:

It is proved that non-exceptional rational functions $f$ and $g$ on the Riemann sphere have the same measure of maximal entropy iff there exist iterates $F$ of $f$ and $G$ of $g$ and natural numbers $M,N$ such that \begin{equation*} (G^{-1}\circ G)\circ G^{M} = (F^{-1}\circ F) \circ F^{N}.\tag {$*$} \end{equation*} If one assumes only that $f,g$ have the same Julia set and no singular or parabolic domains of normality for the iterates, one also proves $(*)$.
References
  • Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
  • A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc. 22 (1990), no. 6, 576–582. MR 1099008, DOI 10.1112/blms/22.6.576
  • A. F. Beardon, Polynomials with identical Julia sets, Complex Variables Theory Appl. 17 (1992), no. 3-4, 195–200. MR 1147050, DOI 10.1080/17476939208814512
  • I. N. Baker and A. Erëmenko, A problem on Julia sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 229–236. MR 951972, DOI 10.5186/aasfm.1987.1205
  • Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
  • Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
  • A. È. Erëmenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 905–919. MR 1027462
  • A. È. Erëmenko and M. Yu. Lyubich, The dynamics of analytic transformations, Algebra i Analiz 1 (1989), no. 3, 1–70 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 563–634. MR 1015124
  • P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Mat. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
  • P. Fatou, Sur les fonctions qui admettent plusieurs théorèmes de multiplication, C.R.A.S. 173 (1921), 571–573; Sur l’itération analytique et les substitutions permutables., J. de Math. 2 (1923), 343.
  • José L. Fernández, A note on the Julia set of polynomials, Complex Variables Theory Appl. 12 (1989), no. 1-4, 83–85. MR 1040911, DOI 10.1080/17476938908814356
  • Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
  • G. Julia, Mémoire sur l’itération des fonctions rationnelles, J. Math. Pure Appl. 8 (1918), 47–245.
  • G. Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Ecole Norm. Sup. 39 (1922), 131–215.
  • G. M. Levin, Symmetries on Julia sets, Mat. Zametki 48 (1990), no. 5, 72–79, 159 (Russian); English transl., Math. Notes 48 (1990), no. 5-6, 1126–1131 (1991). MR 1092156, DOI 10.1007/BF01236299
  • François Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 77–93. MR 627788, DOI 10.1017/s0143385700001176
  • François Ledrappier, Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 1, 37–40 (French, with English summary). MR 756305
  • M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
  • Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
  • Ricardo Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical systems, Valparaiso 1986, Lecture Notes in Math., vol. 1331, Springer, Berlin, 1988, pp. 86–117. MR 961095, DOI 10.1007/BFb0083068
  • William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
  • Ja. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), 55–114.
  • Feliks Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), no. 1, 161–179. MR 784535, DOI 10.1007/BF01388554
  • Feliks Przytycki, Riemann map and holomorphic dynamics, Invent. Math. 85 (1986), no. 3, 439–455. MR 848680, DOI 10.1007/BF01390324
  • F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in International Conference on Dynamical Systems, Montevideo 1995, a tribute to Ricardo Mañé. Pitman Research Notes in Mathematics 362.
  • F. Przytycki, J. Skrzypczak, A. Volberg, The dichotomy for the boundary of a parabolic simply-connected basin, A manuscript, Spring 1995.
  • F. Przytycki and A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique, Fund. Math. 145 (1994), no. 1, 65–77. MR 1295160
  • J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399–448.
  • J. F. Ritt, Periodic functions with a multiplication theorem, Trans. Amer. Math. Soc. 23 (1922), 16–25.
  • V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56 (Russian). MR 0217258
  • David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83–87. MR 516310, DOI 10.1007/BF02584795
  • Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
  • W. Thurston, On combinatorics of iterated rational maps, Preprint, 1985.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F23
  • Retrieve articles in all journals with MSC (1991): 58F23
Additional Information
  • G. Levin
  • Affiliation: Institute of Mathematics, Hebrew University, 91904 Jerusalem, Israel
  • Email: levin@math.huji.ac.il
  • F. Przytycki
  • Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warsaw, Poland
  • MR Author ID: 142490
  • Email: feliksp@impan.gov.pl
  • Received by editor(s): January 27, 1995
  • Received by editor(s) in revised form: February 9, 1996
  • Additional Notes: The preprint version of this paper has the title Rational maps, common Julia sets, functional equations.
  • Communicated by: Mary Rees
  • © Copyright 1997 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 125 (1997), 2179-2190
  • MSC (1991): Primary 58F23
  • DOI: https://doi.org/10.1090/S0002-9939-97-03810-0
  • MathSciNet review: 1376996