Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Local Dirichlet spaces
as de Branges-Rovnyak spaces


Author: Donald Sarason
Journal: Proc. Amer. Math. Soc. 125 (1997), 2133-2139
MSC (1991): Primary 46E20
DOI: https://doi.org/10.1090/S0002-9939-97-03896-3
MathSciNet review: 1396993
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The harmonically weighted Dirichlet spaces associated with unit point masses are shown to coincide with de Branges-Rovnyak spaces, with equality of norms. As a consequence it is shown that radial expansion operators act contractively in harmonically weighted Dirichlet spaces.


References [Enhancements On Off] (What's this?)

  • 1. L. de Branges and J. Rovnyak, Square Summable Power Series, Holt, Rinehart, and Winston, New York, 1966. MR 35:5909
  • 2. B. A. Lotto and D. Sarason, Multipliers of de Branges-Rovnyak spaces, Indiana Univ. Math. J. 42 (1993), 907-920. MR 95a:46039
  • 3. S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), 325-349. MR 92e:47052
  • 4. S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math. J. 38 (1991), 355-379. MR 92i:47035
  • 5. S. Richter and C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory 28 (1992), 167-186. MR 95e:47007
  • 6. S. Richter and C. Sundberg, Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans. Amer. Math. Soc. 341 (1994), 863-879. MR 94d:47026
  • 7. D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1995.
  • 8. D. Sarason, Harmonically weighted Dirichlet spaces associated with finitely atomic measures, in preparation.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E20

Retrieve articles in all journals with MSC (1991): 46E20


Additional Information

Donald Sarason
Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
Email: sarason@math.berkeley.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03896-3
Received by editor(s): February 13, 1996
Communicated by: Theodore W. Gamelin
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society