Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solution curves
for semilinear equations on a ball


Author: Philip Korman
Journal: Proc. Amer. Math. Soc. 125 (1997), 1997-2005
MSC (1991): Primary 35J60
DOI: https://doi.org/10.1090/S0002-9939-97-04119-1
MathSciNet review: 1423311
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the set of positive solutions of semilinear Dirichlet problem on a ball of radius $R$ in $R^n$

\begin{displaymath}\Delta u+\lambda f(u)=0 \; \; \text {for} \; \; |x|<R, \; \; u=0 \; \; \text {on} \; \; |x|=R \end{displaymath}

consists of smooth curves. Our results can be applied to compute the direction of bifurcation. We also give an easy proof of a uniqueness theorem due to Smoller and Wasserman (1984).


References [Enhancements On Off] (What's this?)

  • 1. M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52, 161-180 (1973). MR 49:5962
  • 2. E.N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differ. Equations 37, 404-437 (1980). MR 82b:35018
  • 3. L.C. Evans, Partial Differential Equations, Berkeley Lecture Notes in Mathematics. Vol. 3 A&B (1994).
  • 4. R. Gardner and L.A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Royal Soc. Edinburgh 104A, 53-72 (1986). MR 88e:35063
  • 5. B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68, 209-243 (1979). MR 80h:35043
  • 6. M. Holzmann and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300, 221-241 (1994). MR 95m:35068
  • 7. P. Korman, Steady states and long time behavior of some convective reaction-diffusion equations, To appear in Funkcialaj Ekvacioj.
  • 8. P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary-value problems with nonlinearities generalizing cubic, Proc. Royal Soc. Edinburgh Ser. A 126A, 599-616 (1996). CMP 96:14
  • 9. P. Korman, Y. Li and T. Ouyang, An exact multiplicity result for a class of semilinear equations, To appear in Comm. in PDE.
  • 10. C.S. Lin and W.-M. Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102, 271-277 (1988). MR 88k:35014
  • 11. L.A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $R^n$, Arch. Rat. Mech. Anal. 81, 181-197 (1983). MR 84b:35046
  • 12. J.A. Smoller and A.G. Wasserman, Existence, uniqueness, and nondegeneracy of positive solution of semilinear elliptic equations, Commun. Math. Phys. 95, 129-159 (1984). MR 86c:35058

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35J60

Retrieve articles in all journals with MSC (1991): 35J60


Additional Information

Philip Korman
Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
Email: korman@ucbeh.san.uc.edu

DOI: https://doi.org/10.1090/S0002-9939-97-04119-1
Keywords: Dirichlet problem on a ball, Crandall-Rabinowitz theorem
Received by editor(s): January 9, 1996
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society