Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hereditary noetherian categories
with a tilting complex

Author: Helmut Lenzing
Journal: Proc. Amer. Math. Soc. 125 (1997), 1893-1901
MSC (1991): Primary 14G14, 16G20; Secondary 18F20, 18E30
MathSciNet review: 1423314
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We are characterizing the categories of coherent sheaves on a weighted projective line as the small hereditary noetherian categories without projectives and admitting a tilting complex. The paper is related to recent work with de la Peña (Math. Z., to appear) characterizing finite dimensional algebras with a sincere separating tubular family, and further gives a partial answer to a question of Happel, Reiten, Smalø (Mem. Amer. Math. Soc. 120 (1996), no. 575) regarding the characterization of hereditary categories with a tilting object.

References [Enhancements On Off] (What's this?)

  • 1. A. A. Beĭlinson, Coherent sheaves on 𝑃ⁿ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
  • 2. Peter Gabriel, Indecomposable representations. II, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) Academic Press, London, 1973, pp. 81–104. MR 0340377
  • 3. Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, 10.1007/BFb0078849
  • 4. Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, 10.1016/0021-8693(91)90107-J
  • 5. Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124
  • 6. D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575. CMP 96:08
  • 7. Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, 10.1090/S0002-9947-1982-0675063-2
  • 8. H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, CMS Conf. Proc. 18 (1996), 455-473. CMP 96:12
  • 9. H. Lenzing and J. A. de la Peña, Algebras with a separating tubular family, Math. Z., to appear.
  • 10. Claus Michael Ringel, The canonical algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 407–432. With an appendix by William Crawley-Boevey. MR 1171247

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14G14, 16G20, 18F20, 18E30

Retrieve articles in all journals with MSC (1991): 14G14, 16G20, 18F20, 18E30

Additional Information

Helmut Lenzing
Affiliation: Universität-GH Paderborn, Fachbereich Mathematik-Informatik, D-33095 Pader- born, Germany

Keywords: Weighted projective line, coherent sheaf, almost-split sequence, Auslander-Reiten theory, finite dimensional algebra, quiver, derived category, exceptional object, tilting complex.
Received by editor(s): February 9, 1995
Dedicated: In memory of Maurice Auslander
Communicated by: Eric M. Friedlander
Article copyright: © Copyright 1997 American Mathematical Society