Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Self-contragredient supercuspidal representations of $ \mathrm {GL}_n$


Author: Jeffrey D. Adler
Journal: Proc. Amer. Math. Soc. 125 (1997), 2471-2479
MSC (1991): Primary 22E50; Secondary 20G05, 11F70
MathSciNet review: 1376746
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F$ be a non-archimedean local field of residual characteristic $p$. Then $\mathrm {GL}_n(F)$ has tamely ramified self-contragredient supercuspidal representations if and only if $n$ or $p$ is even. When such representations exist, they do so in abundance.


References [Enhancements On Off] (What's this?)

  • 1. Colin J. Bushnell and Philip C. Kutzko, The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652
  • 2. I. M. Gel′fand and M. I. Graev, Representations of the group of second-order matrices with elements in a locally compact field and special functions on locally compact fields, Uspehi Mat. Nauk 18 (1963), no. 4 (112), 29–99 (Russian). MR 0155931
  • 3. I. M. Gel′fand and D. A. Kajdan, Representations of the group 𝐺𝐿(𝑛,𝐾) where 𝐾 is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 95–118. MR 0404534
  • 4. Roger E. Howe, Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛}, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 0492087
  • 5. George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
  • 6. L. Morris, Level zero ${G}$-types, preprint.
  • 7. Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, 10.2307/2374518
  • 8. Allen Moy and Gopal Prasad, Unrefined minimal 𝐾-types for 𝑝-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, 10.1007/BF01231566
  • 9. -, Jacquet functors and unrefined minimal ${K}$-types, Comm. Math. Helv., to appear. CMP 96:07
  • 10. Paul J. Sally Jr., Invariant subspaces and Fourier-Bessel transforms on the 𝔓-adic plane, Math. Ann. 174 (1967), 247–264. MR 0579179
  • 11. Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962 (French). MR 0150130
  • 12. Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for 𝑝-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, 10.1215/S0012-7094-92-06601-4

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22E50, 20G05, 11F70

Retrieve articles in all journals with MSC (1991): 22E50, 20G05, 11F70


Additional Information

Jeffrey D. Adler
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: jeff@math.uchicago.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03786-6
Received by editor(s): December 1, 1995
Received by editor(s) in revised form: February 12, 1996
Communicated by: Roe W. Goodman
Article copyright: © Copyright 1997 American Mathematical Society