FACTORIZATION OF HOLOMORPHIC MAPPINGS ON $C(K)$–SPACES

JARI TASKINEN

(Communicated by Theodore W. Gamelin)

Abstract. We prove a universal mapping theorem for a large class of holomorphic mappings F on a $C(K)$–space, stating that F can be locally written in the form $F(f) = B(1/(1 - Af))$, where A and B are bounded linear operators on certain Banach spaces consisting of functions on K, and the division is taken pointwise.

Introduction

We prove a linearization theorem for a class of holomorphic mappings F on $C(K)$–spaces. We show in Theorem 3.4 that such an F can be presented as a compose of bounded linear operators A, B and the holomorphic mapping $H(f)(t) := 1/(1 - f(t))$, where $f \in U$ (the open unit ball of $C(K)$) and $t \in K$:

$$F(f) = BH(Af) = B\left(\frac{1}{1 - Af}\right).$$

Here only the operator B depends on F so that this result can be considered as a universal mapping theorem where both the universal map ($= H \circ A$) and also the universal space are of a very special form. The point is that the non–linearity of the universal map comes only from the simple scalar holomorphic map $z \mapsto 1/(1 - z)$.

Our result is only local: it deals only with mappings F defined on open discs. Moreover, there are some unsolved problems concerning the operators A and B. We refer to Theorem 3.4 and Remark 3.5.

Universal mapping theorems for holomorphic mappings on Banach or locally convex spaces have previously been studied for example in [Ma, Mu1, Mu2, Mu–N, G–G–M], see also [R].

1. Notation. Integral holomorphic mappings

We denote by \mathbb{N} the set $\{1, 2, 3, \ldots\}$ and by \mathbb{N}_0 the set $\mathbb{N} \cup \{0\}$. The closed unit interval $[0, 1]$ is denoted by I. All Banach spaces are over the complex scalar field. The space of bounded linear operators between the Banach spaces X and Y is denoted by $L(X, Y)$, or by $L(X)$, if $X = Y$; the dual of X is denoted by X^*. The absolutely convex hull of a subset A of a Banach space is denoted by $\Gamma(A)$.

For general topology we refer to [Ku]. If K is a compact metric space, we denote by $C(K)$ (resp. $\ell_\infty(K)$) the Banach space of continuous (resp. bounded), complex
valued mappings $K \to \mathbb{C}$, endowed with the sup–norm. If K_1 and K_2 are compact metric spaces and $\varphi : K_1 \to K_2$ is a continuous surjection, we denote by φ^o the linear isometry from $C(K_2)$ into $C(K_1)$ given by $\varphi^of = f \circ \varphi$. If $\varphi^o(C(K_2))$ is 1–complemented in $C(K_1)$, i.e., if there exists a contractive projection from $C(K_1)$ onto $\varphi^o(C(K_2))$, we say that φ admits a regular averaging operator. (Note that in this case the map φ^o also has a contractive left inverse.) For more details we recommend the reference [LT], Sections II.4.h,i, and [P].

For complex analysis in infinite dimensional spaces we refer to [D2] and [C]. If X and Y are Banach spaces and $n \in \mathbb{N}$, we denote by $P(nX,Y)$ the space of continuous n–homogeneous polynomials $X \to Y$.

Recall that a continuous n–linear form F on $C(K)^n$ is called integral, if there exists a $\mu(F) \in C(K^n)^*$ such that

$$F(f_1, \ldots , f_n) = \prod_{k=1}^{n} f_k \circ \pi_n^{(k)}(\mu(F)),$$

where $f_k \in C(K)$, $\pi_n^{(k)}$ is the canonical projection from K^n onto the k:th coordinate space and the product on the right-hand side is taken pointwise.

Let $U \subset C(K)$ be open and $F : U \to Y$ holomorphic. We write the Taylor series of F at the point $y \in U$ as

$$F(x) = F_0 + \sum_{n=1}^{\infty} F_n^{(y)}(x-y),$$

where $F_0 \in Y$ and $F_n^{(y)} \in P(nC(K),Y)$; we denote by $F_n^{(y)}$ the corresponding symmetric n–linear mapping.

The following definition was given in [T2].

1.1. Definition. Let Y be a Banach space, let $U \subset C(K)$ be open, let $F : U \to Y$ be a holomorphic mapping, let $B \subset U$ be an open ball with center y and radius r, and let $S \subset Y^*$ be a bounded subset. We say that F is uniformly (S,B)–integral, if

1°. for every $t \in S$, $n \in \mathbb{N}$, the n–linear form

$$(f_1, \ldots , f_n) \mapsto \langle F_n^{(y)}(f_1, \ldots , f_n), t \rangle$$

is integral (write $\mu(F,n,t)$ for the corresponding element of $C(K^n)^*$ as in (1.1)),

2°. the mapping

$$||F||_{S,B} := \sup_{t \in S} \{ ||\langle F_0 , t \rangle || + \sum_{n=1}^{\infty} \sup_{h \in C(K^n)} ||\langle h , \mu(F,n,t) \rangle || r^n \} < \infty,$$

and

3°. the mapping

$$t \to \sum_{n=1}^{\infty} \langle h_n , \mu(F,n,t) \rangle r^n$$

is, for arbitrary $h_n \in C(K^n)$ with $||h_n|| \leq 1$, continuous $S \to \mathbb{C}$, when S is endowed with the weak* topology.
We remark that this concept of integral holomorphic mappings does not coincide with the definition of mappings of integral holomorphy type in [D1] and [A]. Nevertheless, the definition is quite natural and gives quite a large class of holomorphic mappings.

1.2. Examples. 1° The operator \(f \mapsto f^n \) (pointwise multiplication; \(n \in \mathbb{N} \)) is uniformly integral \(C(K) \to C(K) \) for every \(S \) and \(B \) as in Definition 1.1. We especially see that the identity operator on \(C(K) \) is uniformly integral. (We refer to [T2] for the details of this and the following examples.)

2° Let \(U \subset C(K) \) be the open unit ball, let \(Y = C(K) \) and let \(h \) be a scalar valued holomorphic mapping on the open unit disc of \(C \) such that its Taylor coefficients at 0 form an absolutely summable sequence. Then the map \((Hf)(t) := h(f(t)) \), \(f \in U, \ t \in K \), is uniformly \((K, U)\)-integral on \(U \); here the set \(K \) is identified in the canonical way with a subset of \(C(K)^* \).

3° Denote by \(U \subset C(I) \) the open unit ball. If \(F_n : I \times I^n \to C \) is for all \(n \in \mathbb{N}_0 \) a continuous function satisfying \(\sum_{n=0}^{\infty} ||F_n||_{C(I^{n+1})} < \infty \), then the holomorphic integral operator

\[
f \mapsto \sum_{n=0}^{\infty} \int_{I^n} F_n(\cdot, s_1, \ldots, s_n) f(s_1) \ldots f(s_n) ds,
\]

where \(s = (s_1, \ldots, s_n) \), is uniformly \((I, U)\)-integral \(U \to C(I) \).

2. Preliminary results

In this section we present some results necessary for the proof of the main result.

In the following universal mapping theorem we denote by \(K \) a compact metric uncountable space and by \(U \) the open unit ball of \(C(K) \). The set \(K \) is also considered as a subset of \(C(K)^* \): for every \(t \in K \) there corresponds the point evaluation \(\delta_t : f \mapsto f(t), \ f \in C(K) \). This identification is a homeomorphism, when \(C(K)^* \) is endowed with the weak*–topology.

2.1. Theorem. There exists a universal holomorphic mapping \(\psi : U \to C(K) \) such that for every uniformly \((K, U)\)-integral holomorphic \(F : U \to C(K) \) there exists \(B_F \in L(C(K)) \) such that the following diagram commutes:

\[
\begin{array}{ccc}
U & \xrightarrow{F} & C(K) \\
\downarrow{\psi} & & \downarrow{B_F} \\
C(K) & &
\end{array}
\]

This result was proved in [T2], Theorem 2.1.

For the proof of the main theorem of this paper we shall need the following

Remark. Having a look at the proof of Theorem 2.1 of [T2] (especially (2.2) there) one easily verifies that

\[
(2.1) \quad \psi(f) = f_0 + \sum_{n=1}^{\infty} \prod_{k=1}^{n} \psi^{(k)}_n f
\]

where \(f_0 \) is an element of \(C(K) \), \(\psi^{(k)}_n \in L(C(K)) \) and \(||\psi^{(k)}_n|| \leq 1 \) for all \(n \) and \(k \).
2.2. Lemma. Let \(n \in \mathbb{N} \), let \(J \) be a finite set and let \((x_j)_{j \in J} \) be a sequence of complex numbers satisfying \(|x_j| < 1 \). For all sequences of complex numbers \((\lambda_j)_{j \in J} \)

\[
\sup_{t \in [0,1]} \left| \sum_{j \in J} \lambda_j \frac{1}{1 - e^{2i\pi x_j}} \right| \geq \left| \sum_{j \in J} \lambda_j x_j^n \right|.
\]

(2.2)

Proof. Using the Taylor series of the analytic function \(z \mapsto 1/(1-z) \), \(|z| < 1 \), we easily get

\[
\int_0^1 e^{-it2n\pi} \sum_{j \in J} \lambda_j \frac{1}{1 - e^{2i\pi x_j}} dt = \sum_{j \in J} \lambda_j x_j^n
\]

This implies the inequality (2.2).

2.3. Proposition. There exist a strictly increasing sequence \((\tau(t))_{t=0}^\infty \), \(\tau(0) = 1 \), and, for every \(m \in \mathbb{N} \), \(n \in \mathbb{N}_0 \), complex numbers \(a_{m,n} \) and \(b_{m,n} \) such that the following holds (convention: \(0^0 = 1 \)).

For every \(m \in \mathbb{N} \), \(n \in \mathbb{N}_0 \), we have \(|a_{m,n}| < 1 \), \(|b_{m,n}| \leq e^7 \).

For all \(z \in \mathbb{C} \), \(|z| < 1 \), for all \(n \in \mathbb{N}_0 \),

\[
\sum_{t \in \mathbb{N}_0} \sum_{m=\tau(t)}^{\tau(t+1)-1} \sum_{k \in \mathbb{N}_0} b_{m,n} a_{m,n}^k z^k = z^n,
\]

(2.3)

and

\[
\sum_{t \in \mathbb{N}_0} \sum_{m=\tau(t)}^{\tau(t+1)-1} b_{m,0} = 1.
\]

(2.4)

This result is contained in Theorem 9 of [T4].

3. Holomorphic mapping as a compose of linear operators and a scalar holomorphic function

Let \(U \subset C(K) \) be the open unit ball and let \(r > e \). In this section we show that a uniformly \((K, rU)\)-integral holomorphic \(F : rU \to C(K) \) can be presented as a product of linear operators \(A, B \) and the mapping \(H : f(t) \mapsto 1/(1 - f(t)) \), \(f \in U \), \(t \in K \). More precisely, we show that the equality

\[
F(f) = BH(Af)
\]

(3.1)

holds for \(f \in U \).

There are two major difficulties. First, one needs to solve at least approximately an infinite system of polynomially nonlinear equations. The solution is presented in detail in the paper [T4] and only the result is mentioned here; see Proposition 2.3. The second difficulty is to make the operators \(A \) and \(B \) well defined and continuous. We are not able to solve this problem in the optimal way. Accordingly, \(A \) becomes a bounded operator in the sup-norm, but the functions \(Af \), where \(f \in C(K) \), need not be continuous everywhere in \(K \). (However, the discontinuity is in some sense only “mild”.) We are in general able to define the operator \(B \) only in the closed linear span of \(H \circ A \), not in the whole space \(C(K) \) (or \(\ell_\infty(K) \)). Finally, we need to assume that the given map \(F \) is holomorphic in \(rU \), not only in \(U \) (see above). We refer to Remark 3.5 for some explanations.
3.1. Definitions. We choose for every \(n, j \in \mathbb{N}_0, 1 \leq j \leq 2^n \), a closed subinterval \(I_{n,j} \subset I = [0, 1] \) such that \(I_{n,j} \cap I_{n',j'} = \emptyset \), if \(n \neq n' \) or \(j \neq j' \), and such that for every \(\varepsilon > 0 \) the interval \([0, 1 - \varepsilon]\) contains only finitely many intervals \(I_{n,j} \).

We choose for every \(n, j \) a continuous surjection \(\varphi_{n,j} : I_{n,j} \to I^3 \) with a regular averaging operator. (See \([H]\), Theorem 2.2., also \([T3]\), Theorem 2.) We denote by \(\hat{\varphi}_{n,j} \) a contractive left inverse of \(\varphi_{n,j} \).

We fix for every \(n, j \) a Borsuk–Kakutani extension operator \(E_{n,j} : C(I_{n,j}) \to C(I) \) such that \(\text{supp} E_{n,j} f \cap \text{supp} E_{n',j'} g = \emptyset \) for all \(f, g \), if \(n \neq n' \) or \(j \neq j' \). (See [LT], Theorem II.4.14.; since the sets \(I_{n,j} \) have mutually disjoint open neighbourhoods for different indices \(n, j \), a simple trick shows that our requirement for the disjointness of the sets \(\text{supp} E_{n,j} f \) can be satisfied.) We fix some disjoint closed intervals \(J_{s,j} \supset I_{n,j}, J_{n,j} \subset I \), such that \(\text{supp} E_{n,j} f \subset J_{n,j} \) for all \(f \in C(I_{n,j}) \).

For every \(m \in \mathbb{N} \) and \(n, j \) we denote by \(K_{m,n,j} \) a subspace of \(I^3 \) of the form \(I_{n,j} \times \{s_2\} \times \{s_3\} \), where the numbers \(s_2, s_3 \in I \) are chosen such that

\[
s_2 e^{i2\pi s_3} = a_{m,n}.
\]

Here \(a_{m,n} \) is as in Proposition 2.3. We denote by \(\eta_{m,n,j} : I_{n,j} \to K_{m,n,j} \) the homeomorphism \(t \mapsto t \times \{s_2\} \times \{s_3\} \).

3.2. Lemma. Use the notation of Proposition 2.3 and Definition 3.1, and fix some indices \(n \in \mathbb{N}_0, j \in \mathbb{N}, 1 \leq j \leq 2^n \). Let \(\alpha \in L(C(I^3)) \) be a contraction. Define \(\alpha^{(j)}_n \in L(C(I^3)) \) by

\[
(\alpha^{(j)}_n f)(t_1, t_2, t_3) = t_2 e^{i2\pi t_3} (E_{n,j} \hat{\varphi}_{n,j}^{(3)} \alpha f)(t_1),
\]

where \((t_1, t_2, t_3) \in I^3 \).

1°. We have \(||\alpha^{(j)}_n f|| \leq ||\alpha f|| \) for all \(f \).

2°. For every \(f \in H(\alpha^{(j)}_n(U)), \) where \(U \subset C(I^3) \) is the open unit ball, the sum

\[
\beta^{(j)}_n f := \sum_{\tau=0}^{\infty} \sum_{m=\tau(t)} b_{m,n} \hat{\varphi}_{m,n,j} \alpha^{(j,j)} f
\]

converges pointwise in \(I^3 \) and defines a continuous mapping from \(H(\alpha^{(j)}_n(U)) \) into \(C(I^3) \) which can be extended as a bounded linear operator to the subspace \(\text{sp} H(\alpha^{(j)}_n(U)) \). Denoting the extension again by \(\beta^{(j)}_n \) we have \(||\beta^{(j)}_n|| \leq 1 \).

3°. We can define, without increasing the norm of \(\beta^{(j)}_n \),

\[
\beta^{(j)}_n \sum_{k} \lambda_k H(f_k + g_k) = \beta^{(j)}_n \sum_{k} \lambda_k H(f_k)
\]

for all finite sequences \((\lambda_k) \subset \mathbb{C} \), \((f_k) \subset \alpha^{(j)}_n(U) \) and \((g_k) \subset \ell_{\infty}(I^3) \) such that \(||g_k|| < 1, \text{supp}(g_k) \cap J_{n,j} \times I^2 = \emptyset \).

4°. We have for \(n \geq 1 \)

\[
\beta^{(j)}_n H(\alpha^{(j)}_n f) = (\alpha f)^n
\]

for all \(f \in U \), and \(\beta^{(j)}_0 H(0) = 1 \).

Proof. 1°. This is clear.

2°. Assume that \(f \in H(\alpha^{(j)}_n(U)), f = H(\alpha^{(j)}_n g) \) for some \(g \in U \). Because of the definition of \(K_{m,n,j} \) we have for every \(m \in \mathbb{N}_0 \)

\[
f \circ \eta_{m,n,j} = H(a_{m,n} \hat{\varphi}_{n,j}^{(3)} \alpha g) = \hat{\varphi}_{n,j}^{(3)} H(a_{m,n} \alpha g).
\]
Hence,
\[
\beta_n^{(j)} f = \sum_{t=0}^{\infty} \sum_{m=\tau(t)}^{\tau(t+1)-1} b_{m,n} H(a_{m,n} \alpha g) = \sum_{t=0}^{\infty} \sum_{m=\tau(t)}^{\tau(t+1)-1} b_{m,n} \sum_{k=0}^{\infty} (a_{m,n} \alpha g)^k,
\]
and Proposition 2.3 implies the desired pointwise convergence of (3.4). Moreover, by Proposition 2.3 and (3.6),
\[
\beta_n^{(j)} f = (\alpha g)^n,
\]
so that \(\beta_n^{(j)} f \in C(I^3) \).

We extend \(\beta_n^{(j)} \) linearly to \(\text{sp}H(\alpha_n^{(j)}(U)) \) and prove that the extension is a bounded operator. To this end let \(J \subset \mathbb{N} \) be a finite sequence, let for every \(k \in J \) the functions \(f_k \in U \) and the complex numbers \(\lambda_k \) be arbitrary. We apply Lemma 2.2 to get the estimate
\[
\|\beta_n^{(j)} \sum_{k \in J} \lambda_k H(\alpha_n^{(j)} f_k)\| \leq \|\sum_{k \in J} \lambda_k (\alpha f_k)^n\|
\]
(3.8)
\[
\leq \sup_{t_2 \in I_2} \sup_{t_3 \in I_3} \left| \sum_{k \in J} \frac{\lambda_k}{1 - t_2 e^{2 \pi t_3}} \left(\alpha f_k(t) \right) \right|.
\]
Recall that each \(\varphi_{n,j} \) is a surjection and each \(E_{n,j} \) is an extension operator. Hence, (3.8) is not greater than
\[
\sup_{t_2 \in I_2} \sup_{t_3 \in I_3} \left| \sum_{k \in J} \frac{\lambda_k}{1 - t_2 e^{2 \pi t_3}} \left(E_{n,j} \varphi_{n,j}^{\circ} \alpha f_k \right)(t) \right| = \left| \sum_{k \in J} \lambda_k H(\alpha_n^{(j)} f_k) \right|.
\]
(3.9)
This proves the boundedness of \(\beta_n^{(j)} \) in \(E := \text{sp}H(\alpha_n^{(j)}(U)) \) and the desired norm estimate.

3°. The operator \(\beta_n^{(j)} \) is extended above to \(E \). We have \(\text{supp} f \subset J_{n,j} \times I^2 \) for all \(f \in \alpha_n^{(j)}(C(I^3)) \). Hence, for all \(\lambda_k \in \mathbb{C}, f_k \in \alpha_n^{(j)}(U) \) and \(g_k \in \ell_\infty(I^3) \) such that \(\|g_k\| < 1 \) and \(\text{supp}g_k \cap J_{n,j} \times I^2 = \emptyset \),
\[
\|\beta_n^{(j)} \sum_k \lambda_k H(f_k + g_k)\| = \|\beta_n^{(j)} \sum_k \lambda_k H(f_k)\|
\]
\[
\leq \|\sum_k \lambda_k H(f_k)\| \leq \|\sum_k \lambda_k H(f_k + g_k)\|.
\]
(The assumption on the supports is used to get the last inequality.)

4°. Follows from (3.7) and (2.4).

3.3. Lemma. Let \((A_n^{(j)})_{j=1}^{2^n} \) be a sequence of linear contractions \(C(I^3) \to C(I^3) \) and let \(\varepsilon > 0 \). Let \(\psi : U \to C(I^3) \) be the holomorphic mapping
\[
\psi(f)(t) := f_0(t) + \sum_{n=1}^{\infty} \sum_{j=1}^{2^n} \varepsilon_n^{(j)} (A_n^{(j)} f)(t)^n
\]
(3.10)
where \(\varepsilon_n^{(j)} \in \mathbb{C}, |\varepsilon_n^{(j)}| \leq (2 + \varepsilon)^{-n} \) and \(f_0 \in C(I^3) \) is fixed.
There exist linear operators \(A \in L(C(I^3), \ell_\infty(I^3)) \) and \(B_1 \in L(E, C(I^3)) \), where \(E \subset \ell_\infty(I^3) \) is the closed linear span of \(H(A(U)) \), such that

\[
\psi(f) = B_1 H(Af)
\]

for all \(f \in U \).

Proof. We use the notations of Proposition 2.3, Definition 3.1 and Lemma 3.2. For every \(n \in \mathbb{N}_0 \) and \(j = 1, \ldots, 2^n \) we choose the operators \(\alpha_n^{(j)} \) and \(\beta_n^{(j)} \) as in Lemma 3.2, taking \(\alpha = A_n^{(j)} \) and \(\alpha = 0 \) in the case \(n = 0, j = 1 \). We define

\[
A = \sum_{n,j} \alpha_n^{(j)},
\]

\[
B_1 = \beta_0^{(1)} + \sum_{n,j=1} 2^n \beta_n^{(j)}.
\]

That \(A \in L(C(I^3), \ell_\infty(I^3)) \) follows from 1° of Lemma 3.2 and from the assumption on the supports of the functions \(E_{n,j} f \) (Definition 3.1). The boundedness of \(B_1 \) follows from the facts that \(||\beta_n^{(j)}|| \leq 1 \) and \(||\beta_n^{(j)}|| \leq (2 + \varepsilon)^{-n} \) for every \(n, j \), and from 3° of Lemma 3.2. The statements 3° and 4° of Lemma 3.2 yield, for \(f \in U \),

\[
B_1 H(Af) = f_0\beta_0^{(1)} H(0) + \sum_{n,j=1} 2^n \sum_{j=1}^n \varepsilon_n^{(j)} \beta_n^{(j)} H(\alpha_n^{(j)} f)
\]

\[
= f_0 + \sum_{n,j=1} 2^n \sum_{j=1}^n \varepsilon_n^{(j)} (A_n^{(j)} f)^n.
\]

\(\square \)

In the following theorem we denote by \(K \) a compact metrizable uncountable space which has a closed subspace homeomorphic to \(I \) and which is a Peano space (i.e. a continuous image of \(I \)), and by \(U \) the open unit ball of \(C(K) \). Recall that for example every connected compact manifold is this kind of space \(K \).

3.4. Theorem.

Let \(r > 0 \) and let \(F : rU \to C(K) \) be a uniformly \((K, rU)\)-integral holomorphic mapping. There exist linear operators \(A \in L(C(K), \ell_\infty(K)) \) and \(B \in L(E, C(K)) \), where \(E \subset \ell_\infty(K) \) is the closed linear span of \(H(A(U)) \), such that

\[
F(f) = BH(Af) = B \left(\frac{1}{1-Af} \right)
\]

for all \(f \in U \).

Proof. 1°. We first consider the case \(K = I^3 \). One easily verifies that the mapping \(G : U \to C(I^3), G(x) := F(rx) \), is uniformly \((K, U)\)-integral. We apply Theorem 2.1 to write \(G = B_G \circ \psi_G \), where \(B_G \in L(C(I^3)) \),

\[
\psi_G(f) = f_0 + \sum_{n=1}^\infty \prod_{k=1}^n \psi_n^{(k)} f
\]

and \(||\psi_n^{(k)}|| \leq 1 \) for all \(n \) and \(k \) (see (2.1)). We get the representation \(F = B_G \circ \psi \), where

\[
\psi(f) = f_0 + \sum_{n=1}^\infty r^{-n} \prod_{k=1}^n \psi_n^{(k)} f.
\]
For all \(n \in \mathbb{N} \), the polarization formula ([D2], Theorem 1.5) implies the following equality for all complex numbers \(\lambda_k, k = 1, \ldots, n \):

\[
\prod_{k=1}^{n} \lambda_k = \frac{1}{n! 2^n} \sum_{\varepsilon_j = \pm 1} \varepsilon_1 \cdots \varepsilon_n (\sum_{k=1}^{n} \varepsilon_k \lambda_k)^n.
\]

Applying this we get

\[
\psi(f) = f_0 + \sum_{n \in \mathbb{N}} r^{-n} 2^{-n}(n!)^{-1} n^n \sum_{\varepsilon_j = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(n^{-1} \sum_{k=1}^{n} \varepsilon_k \psi_n^{(k)}(f) \right)^n
\]

\[
= f_0 + \sum_{n \in \mathbb{N}} e^{-n}(n!)^{-1} n^n \sum_{\varepsilon_j = \pm 1} (2r/e)^{-n} \varepsilon_1 \cdots \varepsilon_n \left(n^{-1} \sum_{k=1}^{n} \varepsilon_k \psi_n^{(k)}(f) \right)^n.
\]

We have

\[
e^{-n}(n!)^{-1} n^n \leq 1,
\]

since \((n!)^{-1} n^n\) is the \(n\)th term in the Taylor series of \(e^n\). Hence (3.16) yields a representation for \(\psi\) which satisfies the assumptions of Lemma 3.3; in particular, \(A_n^{(j)} := n^{-1} \sum_{k=1}^{n} \varepsilon_k \psi_n^{(k)}\). Let \(A\) and \(B_1\) be as in Lemma 3.3. Setting

\[
B = B_G B_1
\]

gives the desired factorization of \(F\) in the case \(K = I^3\).

2. Let \(K\) be arbitrary. We first choose continuous surjections \(\varphi : K \to I^3\) and \(\varrho : I^3 \to K\) with regular averaging operators. Concerning \(\varrho\), it is enough to take a retraction \(I^3 \to I\) and compose it with a continuous surjection \(I \to K\) having a regular averaging operator (see [H], Theorem 2.2., or [T3], Theorem 2.) The map \(\varphi\) can be found by composing a retraction from \(K\) onto a subspace homeomorphic to \(I\) (recall that \(I\) is an absolute retract space), with a continuous surjection \(I \to I^3\) having a regular averaging operator. We denote a contractive left inverse of \(\varrho \circ \varphi\) by \(\tilde{\varrho}\). Taking a (usually discontinuous) right inverse \(\varphi^{-1}\) of \(\varphi\) one can define a contractive left inverse \(\tilde{\varphi}\) for \(\varphi \circ \varrho\) by \(\tilde{\varphi} = \varphi^{-1} \in L(\ell_\infty(K), \ell_\infty(I^3))\).

If \(F\) is as in the assumption, it follows in a straightforward way from Definition 1.1 that \(G := \varrho \circ F \circ \tilde{\varrho}\) is a uniformly \((I^3, V)\)-integral holomorphic mapping \(V \to C(I^3)\), where \(V \subset C(I^3)\) is the open unit ball. By part 1 of the proof we find bounded linear operators \(A_G\) and \(B_G\) as in (3.13) such that

\[
G(f) = B_G H(A_G f)
\]

for \(f \in V\). We get for \(f \in U\)

\[
F(f) = \tilde{\varrho} \varrho \circ F \circ \tilde{\varrho} \circ \varrho f = \tilde{\varrho} B_G H(\varrho \varrho f)
\]

\[
= \hat{\varrho} B_G \hat{\varphi} \circ H(\varrho \varrho f) = \hat{\varrho} B_G H(\varrho A_G \varrho f),
\]

so that setting \(B = \tilde{\varrho} B_G \hat{\varphi}\) and \(A := \varrho A_G \varrho\) yields the result. We leave the details to the reader. \(\square\)

3.5. Remarks. 1°. In the case \(K = I^3\) the elements of \(A(C(K))\) can be discontinuous only in the subset \(\{1\} \times I^2\) of the boundary of \(I^3\). In the case of general \(K\) the discontinuity may be more serious; it depends on the choice of the mapping \(\varphi\) above.
The explanation for the discontinuity lies in the coefficients ε_k in the polarization formula (see (3.16)): they cause the space $A(C(K))$ to necessarily contain functions which oscillate infinitely often in K with a constant amplitude. The space $C(K)$ does not contain such elements.

2°. By the extension property of the space $\ell_{\infty}(K)$ it is always possible to extend B as a bounded operator $\ell_{\infty}(K) \to \ell_{\infty}(K)$. (See [LT1], Proposition 2.6.2(iii).) In some cases it is possible to extend B even as a bounded operator $E + C(K) \to C(K)$ where $E + C(K)$ is considered as a closed subspace of $\ell_{\infty}(K)$; see Theorem 3.6 below.

3°. There is a natural explanation for the constant $r > \varepsilon > 1$. It comes (modulo an $\varepsilon > 0$) basically from the fact that we cannot avoid the use of the polarization formula in (3.16). A related fact is that the “uniformly integral norm” (1.3) somehow measures the symmetric multilinear mappings in the Taylor series of the given F, whereas the representation (3.13) is more like a “polynomial of an infinite degree”; compare to [D2], Theorem 1.7.

3.6. Theorem. Let r, K, U and F be as in Theorem 3.4. Assume that for every $n \in \mathbb{N}$ the linear operator

$$
T(F, n) \in L(C(K^n), C(K)) \quad \text{and} \quad (T(F, n)f)(t) = \langle f, \mu(F, n, t) \rangle \quad \text{for } t \in K
$$

where $\mu(F, n, t)$ is as in Definition 1.1, 1°, is compact. Then the operator B of Theorem 3.4 can be extended to an element of $L(E + C(K), C(K))$ or $L(\ell_{\infty}(K), C(K))$, where $E + C(K)$ is considered as a closed subspace of $\ell_{\infty}(K)$.

Proof. The assumption (3.19) implies that B_F in the universal mapping Theorem 2.1 is compact. (The reader has to verify this from the proof of Theorem 2.1. of [T2], especially (2.4) and (2.5) there.) Hence, also the operator B is compact, see (3.12) and (3.17) etc. The result follows now from the extension properties of L_{∞}–spaces for compact operators, see [LT], Theorem II.5.25.2.

References

Department of Mathematics, P.O. Box 4 (Hallituskatu 15), FIN-00014 University of Helsinki, Finland

E-mail address: Jari.Taskinen@Helsinki.Fi