Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On subalgebras of Boolean interval algebras

Author: Lutz Heindorf
Journal: Proc. Amer. Math. Soc. 125 (1997), 2265-2274
MSC (1991): Primary 06E05; Secondary 54F05
MathSciNet review: 1389523
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the following three conditions are necessary and sufficient for a Boolean algebra $A$ to be embeddable into an interval algebra.

$A$ is generated by a subset $R$ such that $r\cdot s \in \{0,r,s\}$ for all $r,s\in R$.
$A$ has a complemented subalgebra lattice, where complements can be chosen in a monotone way.
$A$ is isomorphic to ClopX for a compact zero-dimensional topological semilattice $(X; \cdot )$ such that $x\cdot y\cdot z \in \{x\cdot y, x\cdot z\}$ for all $x,y,z \in X$.

References [Enhancements On Off] (What's this?)

  • 1. Bonnet, R. Subalgebras. Chapter 10 in vol. 2 of: J. D. Monk (ed.) Handbook of Boolean algebras. North-Holland, Amsterdam 1989
  • 2. Bonnet, R., Rubin, M., Si-Kaddour, H. Generating sets of superatomic subalgebras of interval algebras. Submitted to Proc. Amer. Math. Soc.
  • 3. van Douwen, E. K. Small tree algebras with nontree subalgebras. Topology and its Applications 51(1993), 173-181. MR 94m:06014
  • 4. Koppelberg, S. General theory of Boolean algebras. vol. 1 of: J. D. Monk (ed.) Handbook of Boolean algebras. North-Holland, Amsterdam 1989
  • 5. Koppelberg, S., Monk, J. D. Pseudo-trees and Boolean algebras. Order 8(1992), 359-374. MR 93i:06006
  • 6. Koppelberg, S. Counterexamples in minimally generated Boolean algebras. Acta Univ. Carolinae - Math. et Physica, 29(1988), 27-36. MR 90a:06014
  • 7. van Mill, J., Wattel, E. Dendrons. 59-82 in: H. R. Bennet, D. J. Lutzer (eds.), Topology and order structures, part I, Mathematical Centre Tracts vol. 142, Amsterdam 1981.
  • 8. Monk, J. D. Notes on pseudo-tree algebras. informal notes, September 1994.
  • 9. Mostowski, A. and A. Tarski Boolesche Ringe mit geordneter Basis. Fundamenta Mathematicae 32(1939), 69-86.
  • 10. Nikiel, J. Orderability properties of a zero-dimensional space which is a continuous image of an ordered compactum. Topology and its Applications 31(1989), 269-276. MR 91g:54041
  • 11. Numakura, K. Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8(1957), 623-636. MR 19:290d
  • 12. Purisch, S. In Topology proceedings 17(1994), Problem section, p. 412.
  • 13. Rao, K.P.S. Bhaskara and M. Bhaskara Rao On the lattice of subalgebras of a Boolean algebra. Czechoslovak Math. Journal 29(1979), 530-545. MR 80j:06017
  • 14. Rotman, B. Boolean algebras with ordered bases. Fundamenta Mathematicae 75(1972), 187-197. MR 46:1671
  • 15. Rubin, M. A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness. Trans. Amer. Math. Soc. 278(1983), 65-89. MR 85a:06024
  • 16. Shelah, S. On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements. Notre Dame Journal of Formal Logic, 22(1981), 301-308. MR 83d:03060

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 06E05, 54F05

Retrieve articles in all journals with MSC (1991): 06E05, 54F05

Additional Information

Lutz Heindorf
Affiliation: Freie Universität Berlin, 2. Mathematisches Institut, Arnimallee 3, D - 141915 Berlin, Germany

Received by editor(s): November 1, 1995
Received by editor(s) in revised form: March 11, 1996
Communicated by: Andreas R. Blass
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society