Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A counterexample to the existence
of peaking functions

Author: Jiye Yu
Journal: Proc. Amer. Math. Soc. 125 (1997), 2385-2390
MSC (1991): Primary 32F15, 32F25
MathSciNet review: 1401757
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a smoothly bounded pseudoconvex domain whose boundary contains no complex analytic variety such that some boundary point admits no holomorphic peak function.

References [Enhancements On Off] (What's this?)

  • [1] E. Bedford and J. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math 107 (1978), 555-568. MR 58:11520
  • [2] E. Bishop, Holomorphic completions, analytic continuations and interpolation of semi-norms, Ann. of Math 78 (1963), 468-500. MR 27:4958
  • [3] D. Catlin, Boundary behavior of holomorphic functions on weakly pseudoconvex domains, Princeton Univ.: Thesis 1978.
  • [4] -, Global regularity for the $\overline \partial $-Neumann problem, Proc. Symp. Pure Math. 41 (1984), 39-49. MR 85j:32033
  • [5] K. Diederich and G. Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry. Aspects of Math. (1994). MR 96b:32019
  • [6] J. Fornæss and J. McNeal, A construction of peak functions on some finite type domains, American J. of Math., No.3, 116 (1994), 737-755. MR 95j:32023
  • [7] J. Fornæss and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J 58 (1989), 633-655. MR 90m:32034
  • [8] J. Fornæss and B. Stensones, Lectures on counterexamples in several complex variables, Princeton University Press, Princeton, 1987. MR 88f:32001
  • [9] T. W. Gamelin, Uniform algebras and Jensen measures, London Math Soc. Lecture Note Series, 32, Cambridge University Press, London, 1978. MR 81a:46058
  • [10] -, Uniform algebras, 2nd ed., Chelsea publishing company, New York, 1984.
  • [11] P. Halmos, Measure Theory, Van Nostrand Reinhold, New York, 1950. MR 11:504d
  • [12] M. Hakim and N. Sibony, Frontiére de Shilov et spectre de $A(\overline {D})$ pour les domaines faiblement pseudoconvexes, C.R.Acad.Sci. Paris 281 (1975), 959-962.
  • [13] -, Quelques conditions pour l'existence de fonctions pics dans des domaines pseudoconvexes, Duke Math J. 44 (1977), 399-406. MR 56:15988
  • [14] J. Kohn and L. Nirenberg, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann. (1973), 265-268. MR 48:8850
  • [15] S. Krantz, Function Theory of Several Complex Variables, 2nd. ed., Wadsworth, Belmont, 1992. MR 93c:32001
  • [16] R. McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math Soc. 69 (1963), 391-395. MR 26:4166
  • [17] A. Noell, Peak functions for pseudoconvex domains, Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987-1988, (J. Fornæss, ed.), pp. 529-541, Mathematical Notes, Princeton, 1993. MR 94a:32027
  • [18] -, Peak points in boundaries not of finite type, Pacific J. Math 123 (2) (1986), 385-390. MR 87i:32023
  • [19] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York, 1986. MR 87i:32001
  • [20] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math 74 (2) (1961), 470-493. MR 24:A3310
  • [21] -, The local maximum modulus principle, Ann. of Math 72 (1) (1960), 1-11. MR 22:8317
  • [22] N. Sibony, Un exemple de domaine pseudoconvexe regulier oú l'equation $\overline \partial u=f$ n'admet pas de solution bornée pour $f$ bornée, Inventiones math. 62 (1980), 235-242. MR 82c:32020
  • [23] -, Une classe de domaines pseudoconvexes, Duke Math J. 55 (2) (1987), 299-319. MR 88g:32036
  • [24] -, Some aspects of weakly pseudoconvex domains, Proc. Symp. Pure Math 52 (1991), 199-233. MR 92g:32034
  • [25] E. Stout, The theory of uniform algebras, Bogden & Quigley, Inc., New York, 1971. MR 54:11066
  • [26] J. Wermer, Banach algebras and several complex variables, Springer-Verlag, 2nd ed., New York, 1976. MR 52:15021
  • [27] J. Yu, Peak functions on weakly pseudoconvex domains, Ind. Univ. Math. J., no.3, 43 (1994), 837-849. MR 93i:32023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32F15, 32F25

Retrieve articles in all journals with MSC (1991): 32F15, 32F25

Additional Information

Jiye Yu
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
Address at time of publication: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Keywords: Peak point, local peak point, peak function, pseudoconvex domain, B-regular domain, Jensen measure, representing measure
Received by editor(s): February 29, 1996
Additional Notes: Supported in part by NSF grant number DMS-9500916.
Communicated by: Eric Bedford
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society