On the generalized Stepanov theorem

Authors:
Maciej Kocan and Xu-Jia Wang

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2347-2352

MSC (1991):
Primary 26B05

DOI:
https://doi.org/10.1090/S0002-9939-97-04010-0

MathSciNet review:
1415347

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The generalized Stepanov theorem is derived from the Alexandrov theorem on the twice differentiability of convex functions. A parabolic version of the generalized Stepanov theorem is also proved.

**1.**A. D. Aleksandrov,*Almost everywhere existence of the second differential of a convex function and some properties of convex functions*, Leningrad Univ. Ann. (Math. Ser.)**37**(1939), 3-35 (Russian).**2.**L. Caffarelli, M. G. Crandall, M. Kocan, and A. "Swiech,*On viscosity solutions of fully nonlinear equations with measurable ingredients*, Comm. Pure Appl. Math.**49**(1996), 365-397. CMP**96:09****3.**A. P. Calderón and A. Zygmund,*Local properties of solutions of elliptic partial differential equations*, Studia Math.**20**(1961), 171-225. MR**25:310****4.**M. G. Crandall, H. Ishii, and P.L. Lions,*User's guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc.**27**(1992), 1-67. MR**92j:35050****5.**L. C. Evans and R. F. Gariepy,*Measure theory and fine properties of functions*, CRC Press, Boca Raton, 1992. MR**93f:28001****6.**H. Federer,*Geometric measure theory*, Springer-Verlag, New York, 1969. MR**41:1976****7.**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Springer-Verlag, New York, 1983. MR**86c:35035****8.**M. de Guzmán,*Differentiation of integrals in*, Lecture Notes in Math., vol. 481, Springer-Verlag, New York, 1975. MR**56:15866****9.**N. V. Krylov,*Nonlinear elliptic and parabolic equations of the second order*, Reidel Pub. Co., Dordrecht, 1987. MR**88d:35005****10.**F. Mignot,*Contrôle optimal dans les inéqualitions variationelles ellitiques*, J. Funct. Anal.**22**(1976), 130-185. MR**54:11136****11.**N. S. Nadirashvili,*Some differentiability properties of solutions of elliptic equations with measurable coefficients*, Math. USSR Izvestiya**27**(1986), 601-606.**12.**W. H. Oliver,*Differential properties of real functions*, Ph.D. thesis, Univ. of Chicago, 1951.**13.**S. J. Reye,*Fully non-linear parabolic differential equations of second order*, Ph.D. thesis, Australian National Univ., 1985.**14.**N. S. Trudinger,*On the twice differentiability of viscosity solutions of nonlinear elliptic equations*, Bull. Austral. Math. Soc.**39**(1989), 443-447. MR**90f:35038****15.**Kaising Tso,*On an Aleksandrov-Bakel'man type maximum principle for second-order parabolic equations*, Comm. Part. Diff. Eq.**10**(1985), 543-553. MR**87f:35031****16.**Lihe Wang,*On the regularity of fully nonlinear parabolic equations: I*, Comm. Pure Appl. Math.**45**(1992), 27-76. MR**92m:35126****17.**W. P. Ziemer,*Weakly differentiable functions*, Springer-Verlag, New York, 1989. MR**91e:46046**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
26B05

Retrieve articles in all journals with MSC (1991): 26B05

Additional Information

**Maciej Kocan**

Affiliation:
Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia

**Xu-Jia Wang**

Affiliation:
Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia

Email:
kocan@maths.anu.edu.au, wang@maths.anu.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-97-04010-0

Received by editor(s):
February 21, 1996

Additional Notes:
This work was supported by the Australian Research Council

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society