On the generalized Stepanov theorem

Authors:
Maciej Kocan and Xu-Jia Wang

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2347-2352

MSC (1991):
Primary 26B05

MathSciNet review:
1415347

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The generalized Stepanov theorem is derived from the Alexandrov theorem on the twice differentiability of convex functions. A parabolic version of the generalized Stepanov theorem is also proved.

**1.**A. D. Aleksandrov,*Almost everywhere existence of the second differential of a convex function and some properties of convex functions*, Leningrad Univ. Ann. (Math. Ser.)**37**(1939), 3-35 (Russian).**2.**L. Caffarelli, M. G. Crandall, M. Kocan, and A. "Swiech,*On viscosity solutions of fully nonlinear equations with measurable ingredients*, Comm. Pure Appl. Math.**49**(1996), 365-397. CMP**96:09****3.**A.-P. Calderón and A. Zygmund,*Local properties of solutions of elliptic partial differential equations*, Studia Math.**20**(1961), 171–225. MR**0136849****4.**Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions,*User’s guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), no. 1, 1–67. MR**1118699**, 10.1090/S0273-0979-1992-00266-5**5.**Lawrence C. Evans and Ronald F. Gariepy,*Measure theory and fine properties of functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR**1158660****6.**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****7.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****8.**Miguel de Guzmán,*Differentiation of integrals in 𝑅ⁿ*, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR**0457661****9.**N. V. Krylov,*Nonlinear elliptic and parabolic equations of the second order*, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. MR**901759****10.**F. Mignot,*Contrôle dans les inéquations variationelles elliptiques*, J. Functional Analysis**22**(1976), no. 2, 130–185 (French). MR**0423155****11.**N. S. Nadirashvili,*Some differentiability properties of solutions of elliptic equations with measurable coefficients*, Math. USSR Izvestiya**27**(1986), 601-606.**12.**W. H. Oliver,*Differential properties of real functions*, Ph.D. thesis, Univ. of Chicago, 1951.**13.**S. J. Reye,*Fully non-linear parabolic differential equations of second order*, Ph.D. thesis, Australian National Univ., 1985.**14.**Neil S. Trudinger,*On the twice differentiability of viscosity solutions of nonlinear elliptic equations*, Bull. Austral. Math. Soc.**39**(1989), no. 3, 443–447. MR**995142**, 10.1017/S0004972700003361**15.**Kaising Tso,*On an Aleksandrov-Bakel′man type maximum principle for second-order parabolic equations*, Comm. Partial Differential Equations**10**(1985), no. 5, 543–553. MR**790223**, 10.1080/03605308508820388**16.**Lihe Wang,*On the regularity theory of fully nonlinear parabolic equations. I*, Comm. Pure Appl. Math.**45**(1992), no. 1, 27–76. MR**1135923**, 10.1002/cpa.3160450103**17.**William P. Ziemer,*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
26B05

Retrieve articles in all journals with MSC (1991): 26B05

Additional Information

**Maciej Kocan**

Affiliation:
Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia

**Xu-Jia Wang**

Affiliation:
Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia

Email:
kocan@maths.anu.edu.au, wang@maths.anu.edu.au

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-04010-0

Received by editor(s):
February 21, 1996

Additional Notes:
This work was supported by the Australian Research Council

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society