Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Poincaré flows


Author: Sol Schwartzman
Journal: Proc. Amer. Math. Soc. 125 (1997), 2493-2500
MSC (1991): Primary 58F25
DOI: https://doi.org/10.1090/S0002-9939-97-04032-X
MathSciNet review: 1415369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study flows on a compact metric space $X$ with the property that corresponding to every non-zero element $\gamma $ of $H^1(X,Z)$ there is either a cross section associated with $\gamma $ or one associated with $-\gamma $. We obtain necessary and sufficient conditions for this to hold; on the $(k+1)$-dimensional torus these conditions take a classical form.


References [Enhancements On Off] (What's this?)

  • 1. V. Bangert, On the existence of closed geodesics on trio-spheres, International Journal of Math. 4 No. 1 (1993), 1-10. MR 94d:58036
  • 2. G. D. Birkhoff, Dynamical Systems, A.M.S. Colloquium Publications, Vol. 9. MR 35:1
  • 3. J. Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Inventiones Math. Vol. 108 Fasc. 2 (1992), 403-418. MR 93f:58192
  • 4. David Fried, The geometry of cross sections to flows, Topology 21 (1982), 353-357. MR 84d:58068
  • 5. David Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982), 237-259. MR 84g:58083
  • 6. F. Brock Fuller, The existence of periodic points, Annals of Math. 2757 (1953), 229-230. MR 14:669f
  • 7. F. Brock Fuller, On the surface of section and periodic trajectories, Amer. Journal of Math. 87 (1965), 473-480. MR 31:3680
  • 8. M. G. Nadkami, Basic Ergodic Theory, Texts and Readings in Math. Vol. 6, Hindustan Book Agency, 1995.
  • 9. S. Schwartzman, Asymptotic cycles, Annals of Math. 66 No. 2 (1957), 270-284. MR 19:568i
  • 10. S. Schwartzman, Global cross sections of compact dynamical systems, Proc. Nat. Acad. Sci. 48 No. 5 (1962), 786-791. MR 25:1543
  • 11. S. Schwartzman, Parallel vector fields and periodic orbits, Proc. A.M.S. No. 1, 167-168. MR 48:9767
  • 12. S. Schwartzman, Periodic orbits for generalized gradient flows, Canadian Math. Bull 38 (1) (1995), 117-119. MR 96b:57031
  • 13. C. L. Siegel, Note on differential equations on the torus, Annals of Math. 46 (1945). MR 7:117g
  • 14. J. C. Oxtoby, Ergodic sets, Bull Amer. Math. Soc. 58 (1952), 116. MR 13:850e

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F25

Retrieve articles in all journals with MSC (1991): 58F25


Additional Information

Sol Schwartzman
Affiliation: Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0806

DOI: https://doi.org/10.1090/S0002-9939-97-04032-X
Received by editor(s): February 26, 1996
Communicated by: Linda Keen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society