Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized principal series representations
of $SL(1+n, \mathbb {C})$


Authors: Anthony H. Dooley and Genkai Zhang
Journal: Proc. Amer. Math. Soc. 125 (1997), 2779-2787
MSC (1991): Primary 22E46, 43A90
DOI: https://doi.org/10.1090/S0002-9939-97-03877-X
MathSciNet review: 1396975
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider certain induced representations of the group
$SL(n+1, \mathbb {C})$ realized on line bundles over the projective space of $\mathbb {C}^{n+1}$. We calculate the intertwining operators in the compact picture. We find all the unitarizable representations and determine the invariant norm.


References [Enhancements On Off] (What's this?)

  • [DOZ] A. Dooley, B. Ørsted and G. Zhang, Relative discrete series of line bundles over bounded symmetric domains, Ann. Inst. Fourier 46 (1996), 1011-1026. CMP 97:03
  • [Hec] G. J. Heckman, Root systems and hypergeometric functions II, Comp. Math. 64 (1987), 352-373. MR 89b:58192b
  • [HO] G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329-352. MR 89b:58192a
  • [He] S. Helgason, Groups and Geometric Analysis, Academic Press, London, 1984. MR 86c:22017
  • [HT] R. Howe and E. Tan, Homogeneous Functions on Light Cones: the Infinitesimal Structure of Some Degenerate Principal Series Representations, Bull. Amer. Math. Soc. 28 (1993), 1-74. MR 93j:22027
  • [Jo] K. D. Johnson, Degenerate principal series and compact groups, Math. Ann. 287 (1991), 703-718. MR 91h:22028
  • [Kn] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986. MR 87j:22022
  • [KW] A. Korányi and J. Wolf, Realization of Hermitian Symmetric spaces as Generalized Half planes, Ann. of Math 81 (1965), 265-268. MR 30:4980
  • [KS] B. Kostant and S. Sahi, Jordan algebras and Capelli Identities, Invent. Math. 112 (1993), 657-664. MR 94b:17054
  • [LP] H. Liu and L. Peng, Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations, Math. Scand. 72 (1993), 99-119. MR 94f:22021
  • [L] O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977.
  • [OZ] B. Ørsted and G. Zhang, Generalized principal series representations and tube domains, Duke Math. J. 78 (1995), 335-357. MR 96c:22015
  • [PZ] J. Peetre and G. Zhang, Harmonic Analysis on Quantized Riemann Sphere, Int. J. Math. $\&$ Math. Sci. 16 (1993), 225-244. MR 94b:47034
  • [Sch] H. Schlichtkrull, One-dimensional $K$-types in finite dimensional representations of semisimple Lie groups: A generalization of Helgason's theorem, Math. Scand. 54 (1994), 279-294. MR 85i:22014
  • [Shi] N. Shimeno, The Plancherel formula for spherical functions with one-dimensional $K$-type on a simply connected simple Lie group of Hermitian type, J. Funct. Anal. 121 (1994), 331-388. MR 95b:22036
  • [St] E. M. Stein, Analysis in matrix spaces and some new representations of $SL(N, \mathbb {C})$, Ann. of Math. 86 (1967), 461-490. MR 36:2749
  • [Vo1] D. Vogan, The unitary dual of $GL(n)$ over an archimedean field, Invent. Math. 83 (1983), 449-505. MR 87i:22042
  • [Vo2] D. Vogan, Unitary Representations of Reductive Lie Groups, Annals of Mathematics Studies, Number 118, Princeton University Press, Princeton, New Jersey, 1978.
  • [V1] L. Vretare, Elementary spherical functions on symmetric spaces, Math. Scand. 39 (1976), 343-358. MR 56:6289
  • [V2] L. Vretare, Recurrence formulas for zonal polynomials, Math. Z. 188 (1985), 419-425. MR 86j:22012
  • [Zh1] G. Zhang, Some recurrence formula for spherical polynomials on tube domains, Trans. Amer. Math. Soc. 347 (1995), 1725-1734. MR 95h:22018
  • [Zh2] G. Zhang, Jordan algebras and generalized principal series representations, to appear, Math. Ann. (1995). CMP 95:16
  • [Zh3] G. Zhang, A weighted Plancherel formula. The case of the ball, Studia Math. 102 (1992), 103-120. MR 94e:43009

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22E46, 43A90

Retrieve articles in all journals with MSC (1991): 22E46, 43A90


Additional Information

Anthony H. Dooley
Affiliation: School of Mathematics, University of New South Wales, Kensington, New South Wales 2033, Australia
Email: tony@solution.maths.unsw.edu.au

Genkai Zhang
Affiliation: Matematiska institutionen, Högskolan i Karlstad, S- 650 09 Karlstad, Sweden
Email: genkai.zhang@hks.se

DOI: https://doi.org/10.1090/S0002-9939-97-03877-X
Keywords: Representation, semisimple Lie group
Received by editor(s): September 26, 1995
Received by editor(s) in revised form: April 9, 1996
Additional Notes: Research sponsored by the Australian Research Council
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society