Generalized principal series representations

of

Authors:
Anthony H. Dooley and Genkai Zhang

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2779-2787

MSC (1991):
Primary 22E46, 43A90

DOI:
https://doi.org/10.1090/S0002-9939-97-03877-X

MathSciNet review:
1396975

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider certain induced representations of the group

realized on line bundles over the projective space of . We calculate the intertwining operators in the compact picture. We find all the unitarizable representations and determine the invariant norm.

**[DOZ]**A. Dooley, B. Ørsted and G. Zhang,*Relative discrete series of line bundles over bounded symmetric domains*, Ann. Inst. Fourier**46**(1996), 1011-1026. CMP**97:03****[Hec]**G. J. Heckman,*Root systems and hypergeometric functions II*, Comp. Math.**64**(1987), 352-373. MR**89b:58192b****[HO]**G. J. Heckman and E. M. Opdam,*Root systems and hypergeometric functions I*, Comp. Math.**64**(1987), 329-352. MR**89b:58192a****[He]**S. Helgason,*Groups and Geometric Analysis*, Academic Press, London, 1984. MR**86c:22017****[HT]**R. Howe and E. Tan,*Homogeneous Functions on Light Cones: the Infinitesimal Structure of Some Degenerate Principal Series Representations*, Bull. Amer. Math. Soc.**28**(1993), 1-74. MR**93j:22027****[Jo]**K. D. Johnson,*Degenerate principal series and compact groups*, Math. Ann.**287**(1991), 703-718. MR**91h:22028****[Kn]**A. W. Knapp,*Representation Theory of Semisimple Groups*, Princeton University Press, Princeton, New Jersey, 1986. MR**87j:22022****[KW]**A. Korányi and J. Wolf,*Realization of Hermitian Symmetric spaces as Generalized Half planes*, Ann. of Math**81**(1965), 265-268. MR**30:4980****[KS]**B. Kostant and S. Sahi,*Jordan algebras and Capelli Identities*, Invent. Math.**112**(1993), 657-664. MR**94b:17054****[LP]**H. Liu and L. Peng,*Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations*, Math. Scand.**72**(1993), 99-119. MR**94f:22021****[L]**O. Loos,*Bounded Symmetric Domains and Jordan Pairs*, University of California, Irvine, 1977.**[OZ]**B. Ørsted and G. Zhang,*Generalized principal series representations and tube domains*, Duke Math. J.**78**(1995), 335-357. MR**96c:22015****[PZ]**J. Peetre and G. Zhang,*Harmonic Analysis on Quantized Riemann Sphere*, Int. J. Math. Math. Sci.**16**(1993), 225-244. MR**94b:47034****[Sch]**H. Schlichtkrull,*One-dimensional -types in finite dimensional representations of semisimple Lie groups: A generalization of Helgason's theorem*, Math. Scand.**54**(1994), 279-294. MR**85i:22014****[Shi]**N. Shimeno,*The Plancherel formula for spherical functions with one-dimensional -type on a simply connected simple Lie group of Hermitian type*, J. Funct. Anal.**121**(1994), 331-388. MR**95b:22036****[St]**E. M. Stein,*Analysis in matrix spaces and some new representations of*, Ann. of Math.**86**(1967), 461-490. MR**36:2749****[Vo1]**D. Vogan,*The unitary dual of over an archimedean field*, Invent. Math.**83**(1983), 449-505. MR**87i:22042****[Vo2]**D. Vogan,*Unitary Representations of Reductive Lie Groups*, Annals of Mathematics Studies, Number 118, Princeton University Press, Princeton, New Jersey, 1978.**[V1]**L. Vretare,*Elementary spherical functions on symmetric spaces*, Math. Scand.**39**(1976), 343-358. MR**56:6289****[V2]**L. Vretare,*Recurrence formulas for zonal polynomials*, Math. Z.**188**(1985), 419-425. MR**86j:22012****[Zh1]**G. Zhang,*Some recurrence formula for spherical polynomials on tube domains*, Trans. Amer. Math. Soc.**347**(1995), 1725-1734. MR**95h:22018****[Zh2]**G. Zhang,*Jordan algebras and generalized principal series representations*, to appear, Math. Ann. (1995). CMP**95:16****[Zh3]**G. Zhang,*A weighted Plancherel formula. The case of the ball*, Studia Math.**102**(1992), 103-120. MR**94e:43009**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22E46,
43A90

Retrieve articles in all journals with MSC (1991): 22E46, 43A90

Additional Information

**Anthony H. Dooley**

Affiliation:
School of Mathematics, University of New South Wales, Kensington, New South Wales 2033, Australia

Email:
tony@solution.maths.unsw.edu.au

**Genkai Zhang**

Affiliation:
Matematiska institutionen, Högskolan i Karlstad, S- 650 09 Karlstad, Sweden

Email:
genkai.zhang@hks.se

DOI:
https://doi.org/10.1090/S0002-9939-97-03877-X

Keywords:
Representation,
semisimple Lie group

Received by editor(s):
September 26, 1995

Received by editor(s) in revised form:
April 9, 1996

Additional Notes:
Research sponsored by the Australian Research Council

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society