TYPE I C*-ALGEBRAS OF REAL RANK ZERO

HUAXIN LIN

(Communicated by Palle E. T. Jorgensen)

Abstract. We show that a separable C*-algebra A of type I has real rank zero if and only if $d(\hat{A}) = 0$, where d is a modified dimension. We also show that a separable C*-algebra of type I has real rank zero if and only if it is an AF-algebra.

1. Recently, there have been remarkable developments in the theory of classification of separable nuclear C*-algebras (see [E3] for a survey). For example, direct limits of (sub)homogeneous C*-algebras of real rank zero have been classified ([EG] and [DG]). All (sub)homogeneous C*-algebras are of type I. Some efforts are made to study direct limits of type I C*-algebras of real rank zero ([LS]). This leads to the question when a separable C*-algebra of type I has real rank zero and how to classify them. It turns out that the question can be fairly easily answered. We show in this short note that a separable C*-algebra of type I has real rank zero if and only if it is an AF-algebra. So they can be classified by their dimension groups ([E1]).

2. It is shown ([BP]) that an abelian C*-algebra $A = C_0(X)$, where X is a locally compact Hausdorff space, has real rank zero if and only if $\dim(X) = 0$. A natural question is whether it can be generalized to type I C*-algebras, i.e., whether a separable C*-algebra of type I has real rank zero if and only if $\dim(\hat{A}) = 0$. It turns out that the usual definition for zero dimension does not work very well when the space is not Hausdorff. Let A be a unital C*-algebra generated by $\{K, 1, p\}$, where K is the C*-algebra of compact operators on an infinite dimensional separable Hilbert space, 1 is the identity operator and both $1 - p$ and p are infinite dimensional projections. Clearly, A is an extension of $\mathbb{C} \oplus \mathbb{C}$ by K and A is a type I C*-algebra with real rank zero. Its spectrum $\hat{A} = \{x_1, x_2, x_3\}$ consists of only three points and its open subsets $T = \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3\}, \hat{A}$, where x_1 is the primitive ideal generated by K and p, x_2 is the primitive ideal generated by K and $1 - p$ and x_3 is the zero ideal. However, by the usual definition, (X, T) is not of dimension zero. It does not have clopen base. The problem is that closure of $\{x_3\}$ is the whole \hat{A}. As far as we are concerned, at least in this note, we do not believe that a space which contains only finitely many points should have “dimension” other than zero.

We now introduce a new concept of “dimension” d. For any topological space Y, let

$$Y_0 = \{y \in Y : y \notin \{z\} \text{ for any } z \in Y, z \neq y\},$$

Received by the editors November 13, 1995 and, in revised form, April 4, 1996.
1991 Mathematics Subject Classification. Primary 46L05.
Research partially supported by NSF grants DMS 93-01082.
where \(\overline{\{z\}} \) is the closure of \(\{z\} \). For any ordinal \(\beta \), suppose \(Y_\alpha \) is defined for any \(\alpha < \beta \); we define

\[
Y_\beta = \{ y \in Y \setminus \cup_{\alpha < \beta} Y_\alpha : y \notin \overline{\{z\}} \text{ for any } z \in Y \setminus \cup_{\alpha < \beta} Y_\alpha, z \neq y \}.
\]

We say \(d(Y) = n \) if \(\dim(Y_\alpha) \leq n \) for all \(\alpha \) and for some \(\alpha \), \(\dim(Y_\alpha) = n \), where \(\dim(X) \) is the covering dimension of \(X \). Here \(Y_\alpha \) is equipped with the relative topology. It is clear that \(d(Y) = \dim(Y) \) if \(Y \) is Hausdorff. In this note we are only interested in the case that \(d(Y) = 0 \). We write \(d(Y) = 0 \), if \(\dim(Y_\alpha) = 0 \) for all ordinals \(\alpha \). Here \(\dim(Y_\alpha) = 0 \) means that \(Y_\alpha \) has a clopen base. We will show that a separable \(C^* \)-algebra \(A \) of type I has real rank zero if and only if \(d(A) = 0 \).

3. For the reader’s convenience, before we go any further, we would like to remind the reader of several definitions. A \(C^* \)-algebra \(A \) is of type I, if every irreducible representation \((H, \pi) \) of \(A \) contains \(K(H) \), the compact operators on \(H \). For type I \(C^* \)-algebra \(A \), its primitive ideals space is the same as its equivalence classes of irreducible representations which will be denoted by \(\hat{A} \). We will refer the reader to section 4.1 of \([P]\) for the notation \(hull \) and basic facts about the hull-kernel topology on \(\hat{A} \).

A \(C^* \)-algebra has real rank zero if invertible selfadjoint elements are dense in the set of selfadjoint elements. In particular, every AF-algebra has real rank zero. A positive element \(x \) in a type I \(C^* \)-algebra \(A \) has a continuous trace, if \(Tr(\pi(x)) \) \((\pi \in \hat{A}) \) is (finite and) continuous on \(\hat{A} \). A type I \(C^* \)-algebra is said to have continuous trace if the set of elements with continuous trace is dense in \(A_+ \). The proof of the main result uses the following facts:

(i) Given an extension \(0 \to J \to A \to A/J \to 0 \), then \(A \) is AF, if both \(J \) and \(A/J \) are AF ([B]).

(ii) Every hereditary \(C^* \)-subalgebra of a \(C^* \)-algebra of real rank zero has real rank zero ([BP]).

(iii) A result from [P] (Theorem 6.2.11) which yields an essential composition series \(\{I_\alpha\}_{0 \leq \alpha \leq \beta} \) for any type I \(C^* \)-algebra \(A \) such that \(I_{\alpha+1}/I_\alpha \) has continuous trace for each ordinal \(\alpha < \beta \).

We then reduce the general case to the case that \(A \) has continuous trace.

4. Lemma. Let \(A \) be a \(C^* \)-algebra of type I. Then

\[
\hat{A}_0 = \hat{A} \setminus hull(I_0),
\]

where \(I_0 \) is the maximal essential ideal of \(A \) with continuous trace.

Proof. Let \(I_0 \) be the maximal essential ideal of \(A \) which has continuous trace. Note \(I_0 \neq \{0\} \) (see [P, 6.2.11]). Since \(\hat{A} \setminus hull(I_0) \) is homeomorphic to \(\hat{I}_0 \) and \(\hat{I}_0 \) is Hausdorff, we have

\[
\hat{A} \setminus hull(I_0) \subset \hat{A}_0.
\]

Fix \(\zeta \in \hat{A}_0 \). Let \((\pi, H) \) be an irreducible representation of \(I_0 \) and let \((\rho, K) \) be the irreducible representation of \(A \) induced by \(\pi \). Since \(I_0 \) is an ideal, \(H = K \). Suppose that \(a \in \ker(\rho) \). Then for any \(i \in I_0, ai, ia \in Ker(\pi) \). Let \(\phi : A \to A/\ker(\pi) \) be the quotient map. Then \(\phi(ai) = \phi(ia) = 0 \). Since \(\phi(I_0) \) is an essential ideal of \(\phi(A) \), \(\phi(a) = 0 \). Therefore \(Ker(\rho) = Ker(\pi) \). Thus \(\zeta \) does not contain \(Ker(\pi) \). In particular, \(I_0 \notin \zeta \). This implies that \(\zeta \in \hat{A} \setminus hull(I_0) \). Therefore

\[
\hat{A} \setminus hull(I_0) = \hat{A}_0.
\]
Let A be a type I C^*-algebra and let $J_0 = I_0$ and $K_0 = 0$. We define I_α, J_α and K_α as follows. Suppose that I_α, J_α and K_α have been defined for all ordinals $\alpha < \beta$. Set $K_\beta = cl(\cup_{\alpha < \beta} I_\alpha)$. Note that A/K_β is type I. Let J_β be the maximal essential ideal of A/K_β with continuous trace and let I_β be the preimage of J_β in A. One of the purposes of the following lemma is to produce a certain composition series which is going to be used in the proof of Theorem 8.

5. Lemma. Let A be a C^*-algebra of type I. Then

$$\hat{A}_\alpha \cong \hat{I}_\alpha \cong (A/K_\alpha) \setminus hull(J_\alpha) = ((A/K_\alpha)_0)$$

and

$$\hat{A} \setminus \hat{A}_\alpha = hull(I_\alpha),$$

where “\cong” means homeomorphic.

Proof. From the homeomorphism between $\hat{A} \setminus hull(I_0)$ and \hat{I}_0, we see that, by Lemma 4, the lemma holds for $\alpha = 0$. Let β be an ordinal number. Suppose that the lemma holds for any ordinal $\alpha < \beta$. Set $K_\beta = cl(\cup_{\alpha < \beta} I_\alpha)$. Let J_β be the maximal essential ideal of A/K_β with continuous trace and let I_β be the preimage of J_β.

Suppose that $\zeta \in \hat{A}_\beta$. Then

$$\zeta \in \hat{A} \setminus \cup_{\alpha < \beta} \hat{A}_\alpha = \cap_{\alpha < \beta} (\hat{A} \setminus \hat{A}_\alpha)$$

$$= \cap_{\alpha < \beta} hull(I_\alpha) = hull(K_\beta).$$

The last equality follows from the definition of K_β. Note that $(A/K_\beta) \cong hull(K_\beta)$. From the definition of \hat{A}_β and by applying the same argument in Lemma 4, we see that $\zeta \in (A/K_\beta) \setminus hull(J_\beta) = ((A/K_\beta)_0)$.

Conversely,

$$((A/K_\beta)_0) = (A/K_\beta) \setminus hull(J_\beta)$$

$$\cong hull(K_\beta) \setminus hull(I_\beta) = (\hat{A} \setminus \cup_{\alpha < \beta} \hat{A}_\alpha) \setminus hull(I_\beta).$$

The last subset is open in $\hat{A} \setminus \cup_{\alpha < \beta} \hat{A}_\alpha$ and is Hausdorff, since the first one is (see Lemma 4). Therefore, it must be a subset of \hat{A}_β which is a subset of $\hat{A} \setminus \cup_{\alpha < \beta} \hat{A}_\alpha$. This implies that

$$\hat{A}_\beta = ((A/K_\beta)_0).$$

So, by Lemma 4,

$$\hat{A} \setminus \hat{A}_\beta \cong hull(J_\beta).$$

This ends the proof.

6. Lemma. Let A be a separable C^*-algebra which has continuous trace. Suppose that $dim(A) = 0$. Then A is an AF-algebra.

Proof. We first recall that \hat{A} is Hausdorff and A is a continuous field of elementary C^*-algebras.

Consider $A \otimes K$, where K is the C^*-algebra of compact operators on l^2. Clearly, $A \otimes M_n$ has continuous trace, where M_n is the C^*-algebra of $n \times n$ matrices (over \mathbb{C}). Since $A \otimes M_n$ is dense in $A \otimes K$, $A \otimes K$ has continuous trace. We also have $(A \otimes K) = \hat{A}$ and every irreducible representation has dimension \aleph_0. So $A \otimes K$ is a separable C^*-algebra with continuous trace, homogeneous of rank \aleph_0. Note also,
since \(\hat{A} \) has dimension zero, \(H^3(\hat{A}, \mathbb{Z}) = \{0\} \). It follows from Corollary 10.9.6 in [Dix] that \(A \otimes \mathcal{K} \cong C_0(\hat{A}) \otimes \mathcal{K} \). Since \(\dim(\hat{A}) = 0 \), \(A \otimes \mathcal{K} \) is an AF-algebra. We conclude that \(A \) is itself AF. \(\square \)

7. Remark. One can prove Lemma 8 without introducing \(H^3(T, \mathbb{Z}) \). But the above proof is shorter.

8. Theorem. Let \(A \) be a separable \(C^* \)-algebra of type I. Then \(A \) has real rank zero if and only if \(d(\hat{A}) = 0 \).

Proof. We first show the theorem holds for the case that \(A \) has continuous trace. In this special case, \(A \) is Hausdorff.

Let \(\mathcal{A} \) be the continuous field of nonzero elementary \(C^* \)-algebras defined by \(A \). Then \(A \) satisfies the Fell’s condition (see [Dix, 10.5.8], i.e., for any \(t_0 \in \hat{A} \), there are a neighborhood \(U(t_0) \) and a vector field \(p \) of \(\mathcal{A} \), defined and continuous in \(U(t_0) \) such that \(p(t) \) is a projection of rank 1, for every \(t \in U(t_0) \). Since \(\hat{A} \) is locally compact and Hausdorff, we may assume that there is a neighborhood \(\hat{V}(t_0) \) such that \(\hat{V}(t_0) \subset \overline{V(t_0)} \subset U(t_0) \), where \(\overline{V(t_0)} \) is compact. There is a non-negative function \(f \in C_0(\hat{A}) \) such that \(f(t) = 1 \) when \(t \in \overline{V(t_0)} \) and \(f(t) = 0 \) if \(t \not\in U(t_0) \). So there is \(x \in A \) such that \(x = f \cdot p \). Suppose that \(I \) is the ideal of \(A \) defined by elements in \(\mathcal{A} \) which vanish in \(\overline{V(t_0)} \). If \(A \) has real rank zero, then so is \(A/I \) ([BP])

Furthermore, \(\pi(x)(A/I)\pi(x) \) has real rank zero. Clearly \(\pi(x)A/I\pi(x) \cong C(\overline{V(t_0)}) \). Therefore, the Hausdorff space \(\overline{V(t_0)} \) has dimension zero. In particular, \(V(t_0) \) has a clopen base. Since this is true for every \(t \in \hat{A} \), we conclude that \(\dim(\hat{A}) = 0 \).

The converse follows from Lemma 6. Moreover, in this case, \(A \) is an AF-algebra.

Now for the general case, by Lemma 5, \(A \) has an essential composition series \(\{I_\alpha|0 \leq \alpha \leq \beta \} \) such that \(I_{\alpha+1}/I_\alpha \) has continuous trace for each \(\alpha < \beta \) and \((I_{\alpha+1}/I_\alpha) = \hat{A}_{\alpha+1} \).

If \(A \) has real rank zero, then by [BP] , each \(J_\alpha \) has real rank zero. Thus, by Lemma 5 and the above, \(\dim(\hat{A}_\alpha) = \dim(\hat{J}_\alpha) = 0 \). Therefore \(d(\hat{A}) = 0 \).

If \(d(\hat{A}) = 0 \), then \(\dim(\hat{I}_\alpha) = 0 \) for each \(\alpha \). From the above, each \(J_\alpha \) is a Banach algebra. We will show that \(A \) itself is an AF-algebra. We prove this by induction on \(\beta \). Suppose that we have shown this for all ordinals \(\alpha < \beta \). If \(\beta \) is not a limit ordinal, say \(\beta = \alpha + 1 \). By the assumption, \(I_\alpha \) is an AF-algebra. We also have that \(A/I_\alpha = J_\beta \) is an AF-algebra. By [BP] , \(A \) is an AF-algebra. If \(\beta \) is a limit ordinal, \(A \) is the norm closure \(\cup_{\alpha < \beta}I_\alpha \), where each \(I_\alpha \) is an AF-algebra. Since we assume that each \(I_\alpha \) is an AF-algebra, we conclude that \(A \) is an AF-algebra. \(\square \)

9. Corollary. A separable \(C^* \)-algebra of type I has real rank zero if and only if it is an AF-algebra.

10. There is also a way to “Hausdorffize” \(\hat{A} \). For the convenience, we will assume that \(A \) is unital. Note that if \(A \) is type I, so is \(\hat{A} \), the unitization of \(A \). Furthermore, \(A \) has real rank zero if and only if \(\hat{A} \) is. Now suppose that \(A \) is a unital type I \(C^* \)-algebra . Then there is a compact Hausdorff space \(H(\hat{A}) \) such that \(C(\hat{A}) \cong C(H(\hat{A})) \) by Gelfand transform. The Hausdorff space is unique up to homeomorphism. Therefore one may use the dimension of \(H(\hat{A}) \) instead of the dimension of \(\hat{A} \). In fact, a separable \(C^* \)-algebra \(A \) of type I has real rank zero if and only if \(\dim(H(\hat{A})) = 0 \).
11. Theorem. Let A be a unital separable C^*-algebra of type I. Then the following are equivalent.

(a) A has real rank zero,
(b) A is an AF-algebra,
(c) $d(\hat{A}) = 0$,
(d) $\dim(H(\hat{A})) = 0$,
(e) The center of A has real rank zero,
(f) The center of A is an AF-algebra.

Proof. We have established the equivalence of (a), (b) and (c).

Let

$I_0 = \{ f \in C(\hat{A}) : f(t) = 0, \ t \notin \hat{A}_0 \}$

$I_\alpha = \{ f \in C(\hat{A}) : f(t) = 0, \text{ if } t \notin \hat{A} \cup \bigcup_{\gamma \leq \alpha} \hat{A}_\gamma \}$.

We have $I_{\alpha+1}/I_\alpha = C_0(\hat{A}_\alpha)$. So if (c) holds, $I_{\alpha+1}/I_\alpha$ is an AF-algebra. Using the same argument that we used earlier, by [B], we see that $C(\hat{A})$ is an AF-algebra. Thus $C(H(\hat{A}))$ is an AF-algebra. Therefore, $\dim(H(\hat{A})) = 0$. This proves (c) implies (d). Conversely, if $\dim(H(\hat{A})) = 0$, then $C(H(\hat{A}))$ is an AF-algebra, whence $C(\hat{A})$ is an AF-algebra. Therefore $I_{\alpha+1}/I_\alpha$ is AF, which implies that $\dim(\hat{A}_\alpha) = 0$. So $d(\hat{A}) = 0$. Therefore (c) and (d) are equivalent.

To include (e) and (f), we apply Dauns-Hofmann’s theorem which says that the center of A is isomorphic to $C(A)$.

ADDED IN PROOF

After this paper was submitted, George Elliott kindly pointed to us that there is an overlap between this paper and [BE] which showed, among other things, that a separable type I C^*-algebra A is AF if and only if \hat{A} has a base of compact open sets.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403-1222

E-mail address: lin@darkwing.uoregon.edu