A CHARACTERIZATION OF RINGS IN WHICH EACH PARTIAL ORDER IS CONTAINED IN A TOTAL ORDER

STUART A. STEINBERG

(Communicated by Lance W. Small)

Abstract. Rings in which each partial order can be extended to a total order are called O^*-rings by Fuchs. We characterize O^*-rings as subrings of algebras over the rationals that arise by freely adjoining an identity or one-sided identity to a rational vector space N or by taking the direct sum of N with an O^*-field. Each real quadratic extension of the rationals is an O^*-field.

A ring R is called an O^*-ring if each of its ring partial orders can be extended to a total order of R. Two of the problems in the list at the back of Fuch's book [4] concern O^*-rings.

(A) Establish ring theoretical properties of O^*-rings.

(B) Does there exist a polynomial identity which forces each totally ordered ring that satisfies it to be an O^*-ring?

These problems were perhaps motivated by the well-known fact that each torsion-free abelian group is an O^*-group. Recently, Kreinovich [7] has shown that (B) has a negative answer in the sense that if $f(x_1,\ldots,x_n)=0$ is such an identity, then each O^*-ring that satisfies it must be trivial; that is, $R^2=0$. In the process of showing this he noted that an O^*-ring has two very restrictive properties: it is algebraic over \mathbb{Z} and each nilpotent element has index at most two. To see this first recall that the partial order in a partially ordered ring R is determined by its positive cone $R^+=\{x\in R: x\geq 0\}$; we will refer to such a positive cone as a partial order of R. Now if a is an element of an O^*-ring R that is not algebraic over \mathbb{Z}, then $\mathbb{Z}^+[-a^2]$ is a partial order of R which is not contained in any total order of R. Also, if $a\in R$ is nilpotent of index $n>2$ let $b=-a^{n-2}$ if n is even and let $b=-a^{n-1}$ if n is odd. Then \mathbb{Z}^+b is a partial order of R that is not contained in any total order of R.

Clearly, each subring of an O^*-ring R is an O^*-ring, and its divisible hull $d(R)$ is also an O^*-ring. For if P is a partial order of $d(R)$ and T is a total order of R which contains $P\cap R$, then $d(T) = \{x \in d(R) : \exists n > 0 \text{ with } nx \in T\}$ is a total order of $d(R)$ which contains P. Consequently, in this paper we will deal exclusively with algebras over the rationals \mathbb{Q}. All such O^*-algebras are determined in the

Theorem. If R is an O^*-algebra, then there is a \mathbb{Q}-vector space N such that R is (isomorphic to) one of the following algebras.

Received by the editors April 9, 1996.

1991 Mathematics Subject Classification. Primary 06F25.
(i) $R = F \oplus N$ (algebra direct sum) where F is a subfield of the reals that is algebraic over \mathbb{Q} and $N^2 = 0$.

(ii) $R = \left(\begin{array}{c} \mathbb{Q} \\ N \\ 0 \\ 0 \end{array} \right)$ or the dual $\left(\begin{array}{c} \mathbb{Q} \\ 0 \\ N \\ 0 \end{array} \right)$.

(iii) $R = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) : a \in \mathbb{Q}, b \in N \right\}$.

Moreover, each of these algebras is an O^*-algebra where in (i) F is an O^*-field.

Proof. If G and H are po-groups with positive cones P_G and P_H respectively, then $G \oplus H$ will denote the po-group whose underlying group is the direct sum $G \oplus H$ and whose positive cone is $\{ g + h : 0 \neq h \in P_H, \text{ or } h = 0 \text{ and } g \in P_G \}$; and $G \oplus H$ will denote the same group ordered similarly but with G dominating. The same arrow notation will be used for other lexicographic orderings even if there are more than two summands.

In a totally ordered ring the set N of nilpotent elements is an ideal and the quotient modulo N is a totally ordered domain [4, p.130]. Assume that $R^2 \neq 0$. Then R has a nonzero idempotent e, and by Albert’s theorem [1] R/N is a field. Since R/N can be embedded in the real closure of \mathbb{Q} [6, p.285] we may assume that it is a subfield of the reals.

Suppose first that R is unital and $N \neq 0$. If $F = R/N$ is a proper extension of \mathbb{Q} let $\{a_i : i \geq 1\}$ be a basis of $\mathbb{Q}F$ with $a_1 = 1$. Then $F = \oplus_{i \geq 1} \mathbb{Q}a_i$, is a totally ordered group. Since $N^2 = 0$ N is a vector space over F. Let $0 \neq x \in N$. Then F^+x is a partial order of R and hence is contained in a total order T of R. This total order induces a total order T_F of the field F. Since (F, T_F) is archimedean, $T_F \not\subseteq F^+$. Let $a \in T$ with $a + N \not\in F^+$. Then $(a + N)x = ax \in T \cap Fx = F^+x$ yields the contradiction that $a + N \not\in F^+$. Thus $F = Q$ and $R = \mathbb{Q}1 + N$ is isomorphic to a ring of type (iii).

Suppose now that R is not unital. Since the left and right annihilator ideals of R are convex ideals one of them is contained in the other. Suppose that the right annihilator $r(R)$ is contained in the left annihilator $l(R)$. According to [2, Theorem 9.4.15] (also see [5, 2.4]) the Pierce decomposition of R is $R = B \oplus C \oplus D$ where $B = eRe$, $D = r(R) = (1 - e)R$, $C = eR(1 - e)$ and $C \oplus D = l(R) = R(1 - e)$. Also, any total order of R is of the form $(B \oplus C \oplus D)^+$. If $C \neq 0$ and $D \neq 0$, then a total order $(C \oplus D)^+$ of $C \oplus D$ could be extended to a total order of R. Thus one of C or D is zero but the other is nonzero. If $C = 0$ then B and D are ideals of R. If B is not a field and $0 \neq b \in B$ with $b^2 = 0$ and $0 \neq d \in D$, then the partial order $(\mathbb{Z}b \oplus \mathbb{Z}d)^+$ could be extended to a total order of R. Thus B is a field and R is of type (i). Suppose then that $D = 0$. If $0 \neq b \in B$ with $b^2 = 0$, then, since in any total order of R either $b \geq C$ or $-b \geq C$, we must have $bc = 0$. But then for $0 \neq c \in C$ there is a total order of R containing $(\mathbb{Z}b \oplus \mathbb{Z}c)^+$. So B is a field. By an argument similar to the one given when R is unital we see that $B = \mathbb{Q}$. Thus R is of type (ii).

We next show that each of these algebras is an O^*-algebra. If $R = F \oplus N$ is of type (i) and P is a partial order of R, then $P_F = \{ \alpha \in F : \alpha + x \in P \text{ for some } x \in N \}$ is a partial order of F. For P_F is closed under addition and multiplication; and if $\alpha + x$ and $-\alpha + y$ are in P then $-\alpha^2 \in P \cap F$. Thus $\alpha = 0$ since F is an O^*-field. Now, if T_F is a total order of the field F with $T_F \supseteq P_F$ and T_N is a total order of the group N with $T_N \supseteq P \cap N$, then $R = [(F, T_F) \oplus (N, T_N)]^+$ is a total order of R which contains P.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Suppose that \(R \) is of type (iii) and that \(P \) is a partial order of \(R \). If \(x = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in P \) with \(a < 0 \) then we may assume that \(a = -1 \). But then \(-1 = x^2 + 2x \in P \) and this is impossible. So if \(T_N \) is a total order of the group \(\begin{pmatrix} 0 & N \\ 0 & 0 \end{pmatrix} \)
which contains \(\begin{pmatrix} 0 & N \\ 0 & 0 \end{pmatrix} \cap P \), then \(\mathbb{Q} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \oplus \left(\begin{pmatrix} 0 & N \\ 0 & 0 \end{pmatrix} \right) = T_N \) gives a total order of \(R \) which contains \(P \). Similarly, each ring of type (ii) is an \(O^* \) ring.

It is interesting to note that the unique totally ordered (right or left) self-injective rings that are not unital are \(O^* \) rings \([8, \text{ Theorem 5.4}]\).

A well-known result of Serre’s \([4, \text{ p.117}]\) implies that a real algebraic extension of \(\mathbb{Q} \) is an \(O^* \) field if and only if each of the algebraic number fields that it contains is an \(O^* \) field.

Example. Each real quadratic extension of \(\mathbb{Q} \) is an \(O^* \) field.

To see this we may assume that \(F = \mathbb{Q}(\sqrt{e}) \) where \(e \in \mathbb{Z}^+ \) is square-free. Let \(P \) be a partial order of \(F \). By replacing \(P \) by \(\mathbb{Q}^+ P + \mathbb{Q}^+ \) we may assume that \(\mathbb{Q}^+ P \subseteq P \) and \(1 \in P \). Now, \(F \) has exactly two total orders \([6, \text{ p. 287}]\): \(T_1 = F \cap \mathbb{R}^+ \) and \(T_2 = \{ a + b \sqrt{e} : a - b \sqrt{e} \in \mathbb{R}^+, a, b \in \mathbb{Q} \} \) where \(\mathbb{R}^+ \) is the total order of \(\mathbb{R} \).

All of the inequalities that subsequently appear will refer to this total order. If \(a + b \sqrt{e} \in P \), then \(\overline{a} = a - b \sqrt{e} \). We first note that

\[
\begin{align*}
(\ast) & & b \geq 0 & \iff \sqrt{e} \in P & \iff \overline{x} \in P & \iff x \in P \\
(\ast\ast) & & b < 0 & \iff -\sqrt{e} \in P & \iff x \in P \\

\end{align*}
\]

For \(b \sqrt{e} = x - a \in P \); so \(b \geq 0 \) (respectively, \(b < 0 \)) \(\iff \sqrt{e} \) (respectively, \(-\sqrt{e} \)) \(\in P \). Also, \(x^2 - ax = eb^2 + ab \sqrt{e} \in P \); so \(1 + \frac{a}{eb} \sqrt{e}, -\left(1 + \frac{b}{a} \sqrt{e} \right) \in P \), and consequently \(\frac{a^2 - b^2 e}{ab} \sqrt{e} = \left(\frac{a}{eb} - \frac{b}{a} \right) \sqrt{e} \in P \). Thus, \(a^2 - b^2 e < 0 \) in both cases. If \(x < 0 \) and also \(b > 0 \), then \(b \sqrt{e} < a^2 \); so \(b < 0 \). Trivially, \(b < 0 \) gives \(x < 0 \). The other case is similar.

Suppose that \(P \not\subseteq T_1, T_2 \). Then there are \(x \in P \setminus T_1 \) and \(y \in P \setminus T_2 \). So \(x = a + b \sqrt{e} < 0 \) and \(y = c + d \sqrt{e} \) with \(\overline{y} < 0 \); hence \(a < 0 \) or \(b < 0 \), and \(c < 0 \) or \(d > 0 \). We consider each of the four cases separately.

(I) \(a < 0 \) and \(c < 0 \). This case is impossible by \((\ast\ast)\) and \((\ast)\).

(II) \(a < 0 \) and \(d > 0 \). By \((\ast\ast)\) \(-\sqrt{e} \in P \) and hence \(c > 0 \). But then \(y_1 = -\sqrt{e} y = -de - c \sqrt{e} \in P \) and \(\overline{y}_1 = -de + c \sqrt{e} = \sqrt{e} \overline{y} < 0 \). This is case I.

(III) \(b < 0 \) and \(c < 0 \). After passing to \(P \) this is case II.

(IV) \(b < 0 \) and \(d > 0 \). To avoid the other cases \(a \geq 0 \) and \(c \geq 0 \). If \(a = 0 \) then \(-\sqrt{e} \in P \), and hence \(-\sqrt{e} y = -de - c \sqrt{e} \in P \); so \(c \sqrt{e} > d^2 e^2 \) by \((\ast)\). But \(c < d \sqrt{e} \) since \(\overline{y} < 0 \). Thus \(a > 0 \). If \(c = 0 \), then \(\sqrt{e} \in P \) and \(\sqrt{e} x = be + a \sqrt{e} \in P \); and hence \(y \in P \) gives case II. Thus \(c > 0 \) and \(xy = (ac + bde) + (ad + bd) \sqrt{e} \in P \) with \(ac + bde < 0 \), since \(a < -b \sqrt{e} \) and \(c < d \sqrt{e} \). By \((\ast)\) and \((\ast\ast)\) \(\sqrt{e} \in P \) or \(-\sqrt{e} \in P \). If the former holds then \(\sqrt{e} x = be + a \sqrt{e} \in P \); this is case II. If the latter holds, \(y_1 = -\sqrt{e} y = -de - c \sqrt{e} \in P \) and \(\overline{y}_1 < 0 \). This contradicts \((\ast)\).
This calculation actually gives the

Corollary. The following statements are equivalent for the quadratic extension $F = K(\sqrt{e})$ of the O^*-field K.

1. F is an O^*-field.
2. e is totally positive in K (that is, e is positive in each total order of K), and for each partial order P of F there is a total order T of K such that PT is a partial order of F.
3. Each maximal partial order of F contains e and a total order of K.

Note that $\mathbb{Q}(\sqrt{e})$ is not an O^*-field if $0 < e \in \mathbb{Z}$ is square-free.

References

7. V. Kreinovich, If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring, Algebra Universalis 33 (1995), 237-242. MR 96c:06030

Department of Mathematics, The University of Toledo, Toledo, Ohio 43606-3390
E-mail address: ssteinb@uoft02.utoledo.edu