Quotients of little Lipschitz algebras

Author:
Nik Weaver

Journal:
Proc. Amer. Math. Soc. **125** (1997), 2643-2648

MSC (1991):
Primary 46E15; Secondary 46J10, 46J15

MathSciNet review:
1402889

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a Tietze type theorem which provides extensions of little Lipschitz functions defined on closed subsets. As a consequence, we get that the quotient of any little Lipschitz algebra by any norm-closed ideal is another little Lipschitz algebra.

**1.**W. G. Bade, P. C. Curtis Jr., and H. G. Dales,*Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc. (3)**55**(1987), no. 2, 359–377. MR**896225**, 10.1093/plms/s3-55_2.359**2.**Sandy Grabiner,*The Tietze extension theorem and the open mapping theorem*, Amer. Math. Monthly**93**(1986), no. 3, 190–191. MR**828325**, 10.2307/2323339**3.**Leonid G. Hanin,*Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces*, Proc. Amer. Math. Soc.**115**(1992), no. 2, 345–352. MR**1097344**, 10.1090/S0002-9939-1992-1097344-5**4.**Lars Inge Hedberg,*The Stone-Weierstrass theorem in Lipschitz algebras*, Ark. Mat.**8**(1969), 63–72. MR**0261358****5.**T. M. Jenkins,*Banach Spaces of Lipschitz Functions on an Abstract Metric Space*, Ph.D. Thesis, Yale University (1968).**6.**E. J. McShane,*Extension of range of functions*, Bull. Amer. Math. Soc.**40**(1934), 837-842.**7.**Walter Rudin,*Functional analysis*, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR**1157815****8.**Donald R. Sherbert,*The structure of ideals and point derivations in Banach algebras of Lipschitz functions*, Trans. Amer. Math. Soc.**111**(1964), 240–272. MR**0161177**, 10.1090/S0002-9947-1964-0161177-1**9.**Nik Weaver,*Order completeness in Lipschitz algebras*, J. Funct. Anal.**130**(1995), no. 1, 118–130. MR**1331979**, 10.1006/jfan.1995.1065**10.**-,*Subalgebras of little Lipschitz algebras*, Pac. J. Math.**173**(1996), 283-293.**11.**-,*Lipschitz algebras and derivations of von Neumann algebras*, J. Funct. Anal.**139**(1996), 261-300.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46E15,
46J10,
46J15

Retrieve articles in all journals with MSC (1991): 46E15, 46J10, 46J15

Additional Information

**Nik Weaver**

Affiliation:
Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024

Email:
nweaver@math.ucla.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-03985-3

Received by editor(s):
March 18, 1996

Additional Notes:
This research was supported by NSF grant DMS-9424370

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society