COMMUTATIVE GROUP ALGEBRAS
OF \(\sigma \)-SUMMABLE ABELIAN GROUPS

PETER DANCHEV

(Communicated by Ken Goodearl)

Abstract. In this note we study the commutative modular and semisimple group rings of \(\sigma \)-summable abelian \(p \)-groups, which group class was introduced by R. Linton and Ch. Megibben. It is proved that \(S(RG) \) is \(\sigma \)-summable if and only if \(G_p \) is \(\sigma \)-summable, provided \(G \) is an abelian group and \(R \) is a commutative ring with 1 of prime characteristic \(p \), having a trivial nilradical. If \(G_p \) is a \(\sigma \)-summable \(p \)-group and the group algebras \(RG \) and \(RH \) over a field \(R \) of characteristic \(p \) are \(R \)-isomorphic, then \(H_p \) is a \(\sigma \)-summable \(p \)-group, too.

In particular \(G_p \cong H_p \) provided \(G_p \) is totally projective of a countable length.

Moreover, when \(K \) is a first kind field with respect to \(p \) and \(G \) is \(p \)-torsion, \(S(RG) \) is \(\sigma \)-summable if and only if \(G \) is a direct sum of cyclic groups.

Let \(p \) be a fixed prime. Throughout this paper \(G \) is an abelian group, \(G^{p\omega} = \bigcap_{n<\omega} G^{p^n} \) is its first \(p \)-Ulm subgroup (a first Ulm subgroup with respect to \(p \)) and \(G[p] \) is the socle of the \(p \)-primary component \(G_p = \bigcup_{n<\omega} G[p^n] \).

In this note we investigate the commutative group algebras of \(\sigma \)-summable abelian \(p \)-groups. We obtain some characterizations of \(\sigma \)-summability for normed \(p \)-torsion components of abelian group rings. For this we need certain definitions (cf. [5]) and observations.

If \(\lambda \) is a limit ordinal, we call a \(p \)-group \(G \) a \(C_\lambda \)-group provided \(G/G^{p\omega} \) is totally projective for all \(\alpha < \lambda \). Thus every abelian \(p \)-group is a \(C_\omega \)-group. Recall that the length of a reduced \(p \)-group \(G \) is just the smallest ordinal \(\lambda \) such that \(G^{p\lambda} = 1 \). If \(\lambda = \omega \), we call such an abelian \(p \)-group \(G \) separable, i.e. the \(p \)-primary \(G \) is said to be separable if \(G^{p\omega} = 1 \). We shall say that a reduced abelian \(p \)-group \(G \) is \(\sigma \)-summable if its socle \(G[p] \) is the ascending union of a sequence of subgroups \(\{S_n \}_{n<\omega} \), where for each \(n \) there is an ordinal \(\alpha_n \) less than the length of \(G \) such that \(S_n \cap G^{p^{\alpha_n}} = 1 \).

Thus the reduced abelian \(p \)-group \(G \) is \(\sigma \)-summable (by Linton-Megibben [5]) if and only if \(G[p] = \bigcup_{n<\omega} S_n \), where \(S_n \subseteq S_{n+1} \) and \(S_n \cap G^{p^{\alpha_n}} = 1 \) for every natural \(n \) and some ordinal \(\alpha_n < \text{length } G \). This definition for \(\sigma \)-summability, as a generalization of the classical Kulikov criterion for direct sums of cyclic \(p \)-groups, possesses the following properties: Some subgroups and direct sums of \(\sigma \)-summable groups are \(\sigma \)-summable; the separable abelian \(p \)-group \(G \) is \(\sigma \)-summable if and only

Received by the editors March 3, 1995 and, in revised form, April 12, 1996.
1991 Mathematics Subject Classification. Primary 20C07; Secondary 20K10, 20K21.
Key words and phrases. Commutative modular and semisimple group algebras, \(\sigma \)-summable groups, normalized units, isomorphism, totally projective groups.
This research was supported by the National Foundation “Scientific Researches” of the Bulgarian Ministry of Education and Science under contract MM 70/91.
if it is a direct sum of cyclic groups; all summmable groups with countable limit lengths are \(\sigma\)-summmable; a totally projective \(p\)-group \(G\) of a limit length cofinal with \(\omega\) is \(\sigma\)-summmable.

More generally, the next statement is valid.

Theorem (Linton-Megibbon [5]). Let \(\lambda\) be a limit ordinal cofinal with \(\omega\). Then a \(p\)-group \(G\) of length \(\lambda\) is totally projective if and only if \(G\) is a \(\sigma\)-summmable \(C_\lambda\)-group.

Thus, if \(G\) is a \(\sigma\)-summmable \(p\)-group, then \(G\) is not totally projective when \(G\) is not a \(C_\lambda\)-group. Furthermore, if \(G\) and \(H\) are \(\sigma\)-summmable, then \(G \not\cong H\) is possible, even assuming that the Ulm-Kaplansky functions of \(G\) and \(H\) are equal (it is well-known that \(G \cong H\) when both \(G\) and \(H\) are totally projective). The major open question, when is \(G \cong H\), provided \(G\) and \(H\) are \(\sigma\)-summmable, is interesting. Is it true if and only if \(G[p]\) and \(H[p]\) are isomorphic as valued vector spaces (i.e. if and only if there is an isometry (a height-preserving isomorphism) of \(G[p]\) onto \(H[p]\))?

Now, because each countable limit ordinal is cofinal with \(\omega\), owing to the above theorem and following step-by-step the idea for proof in [7], we close the introduction with the following

Criterion. Suppose \(G\) is an abelian \(p\)-group of countable length \(\lambda\). Then \(G\) is totally projective if and only if \(G/G^{\omega^\alpha}\) is \(\sigma\)-summmable for all limit \(\alpha \leq \lambda\).

Modular group algebras of \(\sigma\)-summmable abelian groups

First and foremost we denote by \(R\) a commutative ring with identity of prime characteristic \(p\) and by \(S(RG)\) the normed \(p\)-component in a group ring \(RG\). Define \(M = M[N(R); \Pi(G/H)] = \{\sum_{g \in \Pi} r_g (1 - g) \mid r_g \in N(R)\}\), where \(N(R) = \bigcup_{n < \omega} R(p^n)\) is the nilradical (the Baer radical) of \(R\) with \(p^\alpha\)-socles \(R(p^n) = \{r \in R \mid r^{p^n} = 0\}\) and \(\Pi = \Pi(G/H)\) is a complete system of representatives of \(G\) with respect to the subgroup \(H \subseteq G\), containing the identity of \(G\). Let \(I = I(RG; H)\) be the relative augmentation ideal of \(RG\) with respect to \(H\).

The following preliminary conclusions are well-known (see [3] and [4]), but for completeness and for the convenience of the reader we give proofs. We start with the following

Main Lemma.

\[
\begin{align*}
(*) & \quad S(RG)[p] = 1 + I(RG; G[p]) \oplus M[N(R); \Pi(G/G[p])], \\
(**) & \quad S(RG) = 1 + I(RG; G_p) \oplus M[N(R); \Pi(G/G_p)].
\end{align*}
\]

Proof. Certainly, \(S(RG) = 1 + I_p(RG; G)\), where \(I_p(RG; G) \overset{\text{def}}{=} \{x \in I(RG; G) \mid x^{p_\alpha} = 0\}\), hence it remains only to show that \(I_p(RG; G) = I(RG; G_p) \oplus M[N(R); \Pi(G/G_p)]\).

Actually, for this purpose, given \(x \in I_p(RG; G)\), clearly \(x = \sum_{g \in \Pi} \sum_{h \in G_p} x_{gh} \cdot gh\), where \(x_{gh} \in R, \sum_{h \in G_p} x_{gh} = r_g \in N(R)\), and \(\sum_{g \in \Pi} \sum_{h \in G_p} x_{gh} = \sum_{g \in \Pi} r_g = 0\). Thus \(x = \sum_{g \in \Pi} \sum_{h \in G_p \setminus \{1\}} x_{gh} \cdot gh \cdot (g(h - 1) + \sum_{g \in \Pi \setminus \{1\}} r_g (g - 1) \in I + M\), since \(x_{gh} \cdot g \in RG\). Besides, if \(y \in I \cap M\), then \(y = \sum_{g \in \Pi} \sum_{h \in G_p} x_{gh} \cdot gh\), along with the conditions \(r_g = 0\) for each \(g \in \Pi\) and \(h = 1\). Therefore \(x_{gh} = 0\) and \(y = 0\), i.e. \(I \cap M = 0\) implies \(x \in I \oplus M\). The proof is complete.
Let G.

By a standard transfinite induction, we only need consider $\alpha = 1$. Now, in this case clearly $S^p(RG) \subseteq S(R^pG^p)$.

Conversely, take $x \in S(R^pG^p)$, hence $x = \sum_i r_i^p g^p_i$, where $r_i \in R, g_i \in G$ and besides $\sum_i r_i^p = 1$. Thus $x = \sum_i r_i^p g^p_i - \sum_i r_i^p + 1 = (1 - \sum_i r_i(1 - g_i))^p = y^p \in S^p(RG)$, since $y = 1 - \sum_i r_i(1 - g_i) \in S(RG)$. So, $S(R^pG^p) \subseteq S^p(RG)$, as required. The proof is finished.

Lemma 2. $S(RG) = 1$ if and only if $N(R) \neq 0$ and $G = 1$, or $N(R) = 0$ and $G_p = 1$.

Proof. If $N(R) = 0$ and $G_p = 1$, then $M = 0$ and $I = 0$. Consequently $S(RG) = 1$ by the Main Lemma. Conversely, if $S(RG) = 1$, then apparently $G_p = 1$ and $\Pi = 1$, when $N(R) \neq 0$. Therefore $G = G_p = 1$, as desired.

Proposition 3. If $N(R) = 0$, then

(\circ) \quad S(RG)$ is reduced if and only if G_p is reduced,

(\circ\circ) \quad S(RG)$ is separable if and only if G_p is separable.

Proof. (\circ) Lemma 1 implies that the maximal divisible subgroup of $S(RG)$ is precisely $S(PG^*)$, where P is the maximal perfect subring of R and G^* is the maximal p-divisible subgroup of G. But, it is evident that the maximal divisible subgroup of G_p is equal to $(G^*)_p$. So, $(G^*)_p = 1$ and Lemma 2 yields $S(PG^*) = 1$, since $N(P) = 0$.

(\circ\circ) $(G^*)^p = (G_p)^p = 1$, therefore $S^p(G^*) = S(R^pG^p) = 1$ by Lemmas 1 and 2. The proposition is true.

Lemma 4. If A and H are subgroups of G and L is a subring of R with the same identity, then

(\circ\circ\circ) \quad [1 + I(RG;H)] \cap S(LA) \subseteq 1 + I(LA;A \cap H),

\quad [1 + I(RG;H)] \cap G_pS(LA) \subseteq G_p[1 + I(LA;A \cap H)].

Proof. Let $x \in [1 + I(RG;H)] \cap S(LA)$, hence $x = \sum_{a \in A} x_a a, x_a \in L$, and

$$\sum_{a \in bH} x_a = \begin{cases} 1, & b \in H, \\ 0, & b \notin H, \end{cases} \text{ for each } b \in A.$$

But $b(H \cap A) = bH \cap A$ because $b \in A$. Thus

$$\sum_{a \in b(b(H \cap A))} x_a = \begin{cases} 1, & b \in H \cap A, \\ 0, & b \notin H \cap A, \end{cases} \text{ for every } b \in A,$$

and obviously $x \in 1 + I(LA;A \cap H)$.

To prove the second inequality, choose x in the left-hand side. Hence $x = g_p \sum_{a \in A} x_a a$, where $x_a \in L, g_p \in G_p$ and

$$\sum_{a \in bH} x_a = \begin{cases} 1, & b \in H, \\ 0, & b \notin H, \end{cases} \text{ for each } b \in A.$$
Therefore as above we see that x lies in $G_p[1 + I(LA; A \cap H)]$. The statement is shown.

The summability for $S(RG)$ in a modular aspect is discussed in [3]. Now we are in position to prove

Theorem. Let R be a ring without nilpotent elements. Then $S(RG)$ is σ-summable if and only if G_p is σ-summable. Besides, if G_p is σ-summable of a limit length, then $S(RG)/G_p$ is σ-summable.

Proof. If $S(RG)$ is σ-summable, then G_p is the same since it is a subgroup with equal length.

Now we treat the more difficult converse question. For this, suppose that G_p is σ-summable. Hence G_p and $S(RG)$ are both reduced by Proposition 3 and besides length $S(RG) = \text{length } G_p$ applying Lemmas 1 and 2. Moreover $G[p] = \bigcup_{n<\omega} G_n$, where $G_n \subseteq G_{n+1}$ and $G_n \cap G^{\alpha n} = 1$ for ordinals α_n strictly less than the length of G_p. From the Main Lemma, $S(RG)[p] = 1 + I(G_p; G[p])$, hence $S(RG)[p] = \bigcup_{n<\omega} [1 + I(G_p; G_n)]$. Moreover, we compute $[1 + I(G_p; G_n)] \cap S^{\alpha n}(RG) = 1 + I(G_p; G_n) \cap (RG) = 1$ for all α_n, using Lemmas 1 and 4. Finally $S(RG)$ is also σ-summable.

Further, since G_p is balanced in $S(RG)$ [3] we derive

$$S(RG)/G_p[p] = S(RG)[p]G_p/G_p = \bigcup_{\alpha < \omega} [(1 + I(G_p; G_n))G_p/G_p].$$

Moreover using Lemmas 1 and 4 we calculate

$$[(1 + I(G_p; G_n))G_p/G_p] \cap (S(RG)/G_p)^{\alpha n} = [(1 + I(G_p; G_n))G_p/G_p] \cap [S(R^{\alpha n}G^{\alpha n})G_p/G_p] = [(1 + I(G_p; G_n))G_p/G_p] \cap [S(R^{\alpha n}G^{\alpha n})G_p/G_p]$$

$$= G_p[(1 + I(G_p; G_n)) \cap [S(R^{\alpha n}G^{\alpha n})G_p]/G_p]$$

$$= G_p(1 + I(R^{\alpha n}G^{\alpha n}; G^{\alpha n} \cap G_n)/G_p).$$

Besides using the fact that G_p is nice in $S(RG)$ [3], it is elementary to verify that $S(RG)/G_p$ is reduced and length$(S(RG)/G_p) = \text{length } G_p$. Finally, $S(RG)/G_p$ must be σ-summable, as stated. This completes the proof.

Problem. Is $S(RG)/G_p$ totally projective assuming G_p is σ-summable of a limit length (in particular of a length cofinal with ω) and $N(R) = 0$? Moreover, is G_p a direct factor of $S(RG)$?

Corollary 5 ([2, 3, 4]). If $N(R) = 0$, then $S(RG)$ is a direct sum of cyclic groups if and only if G_p is a direct sum of cyclic groups. Besides if G_p is a direct sum of cyclics, then G_p is a direct factor of $S(RG)$ with a complement which is a direct sum of cyclics.

Proof. By the Theorem and Proposition 3, G_p is separable σ-summable if and only if $S(RG)$ is separable σ-summable. But this is a direct sum of cyclic groups. Further, if G_p is a direct sum of cyclics, then again the Theorem implies that $S(RG)/G_p$ is separable σ-summable, i.e. a direct sum of cyclics. But G_p is pure in $S(RG)$ and so from a well-known fact due to L. Kulikov in the abelian group theory, G_p is a direct factor of $S(RG)$. The proof is fulfilled.
More recently, W. May in [6] has proved that, if G is a totally projective p-group and R is a perfect field (eventually R is a perfect ring with $N(R) = 0$), then $S(RG)$ is totally projective. We can now state

Proposition 6. If G_p is totally projective with a limit length cofinal with ω and $N(R) = 0$, then $S(RG)$ is σ-summable.

Proof. By the Linton-Megibben theorem, G_p is σ-summable and we need only apply the central theorem. So, the assertion holds.

In the work [6], W. May also proves that, if G is totally projective p-primary and $RH \cong RG$ as R-algebras for any group H, then H is also totally projective p-primary, and therefore $H \cong G$, because the corresponding group cardinal invariants of Ulm-Kaplansky of H and G are equal.

Now we conclude an assertion analogous to the above.

Proposition 7. If G_p is σ-summable and H is a group so that $RH \cong RG$ as R-algebras, then H_p is σ-summable.

Proof. We can assume that R is a field, hence $S(RG) \cong S(RH)$, and the Theorem yields the result immediately.

In particular, as a corollary, if G is a σ-summable p-group and $RG \cong RH$ as R-algebras, then H is one also. But whether $G \cong H$ is unknown.

We shall begin in this paragraph with the following

Main Proposition. Suppose $RG \cong RH$. Then for each ordinal α, the isomorphism $R(G/G_p^{\alpha}) \cong R(H/H_p^{\alpha})$ holds.

Proof. Really, we may assume that R is a field and that $RG = RH$, where $H \subseteq V(RG)$ is a normalized group basis in the group $V(RG)$ of all normed units. Therefore in view of the Main Lemma, $S(RG) = 1 + I(RG; G_p) = 1 + I(RH; H_p) = S(RH)$. Hence $I(RG; G_p) = I(RH; H_p)$ and obviously

$$I_p^\alpha(RG; G_p) = I(R^p\sigma G_p^{\sigma}; G_p^{\sigma}) = I(R^\sigma H_p^{\sigma}; H_p^{\sigma}) = I_p^\sigma(RH; H_p)$$

for every ordinal α. But then

$$I(RG; G_p^{\sigma}) = RG \cdot I(R^p\sigma G_p^{\sigma}; G_p^{\sigma}) = RH \cdot I(R^\sigma H_p^{\sigma}; H_p^{\sigma}) = I(RH; H_p^{\sigma}).$$

So, finally we derive

$$R(G/G_p^{\sigma}) \cong RG/I(RG; G_p^{\sigma}) = RH/I(RH; H_p^{\sigma}) \cong R(H/H_p^{\sigma}),$$

as stated.

We are ready to attack

Proposition 8. Suppose G_p is totally projective of a countable length. Then $RH \cong RG$ as R-algebras for any group H implies $H_p \cong G_p$.

Proof. Indeed, we may harmlessly presume that length G_p is limit and thus according to the modified criterion of Linton-Megibben for total projectivity, given by us in the introduction, $G_p/G_p^{\sigma} = (G/G_p^{\sigma})_p$ is σ-summable for all limit $\alpha \leq \text{length } G_p$.

But the Main Proposition and Proposition 7 yield that $(H/H_p^{\sigma})_p = H_p/H_p^{\sigma}$ is σ-summable. By applications of Lemmas 1 and 2 when R is a field, it is a routine matter to see that length $S(RG) = \text{length } G_p$. As a consequence, $RG \cong RH$ does imply length $G_p = \text{length } H_p$ and so the criterion for total projectivity cited above
is applicable to obtain that H_p is totally projective. But by the well-known and documented classical result of May, the R-isomorphism $RG \cong RH$ implies that G_p and H_p have the same functions of Ulm-Kaplansky. Thus, $G_p \cong H_p$ as claimed.

Remark. Proposition 8 partially solves a problem posed by W. May in [6].

Semisimple group algebras of σ-summable abelian groups

Denote by K the field of the first kind with respect to p with a p-torsion part $U_p(K)$, and by $S(KG)$ and $U_p(KG)$ the p-components in the group algebra KG. The following formula is well-known:

$$U_p(KG) = S(KG) \times U_p(K).$$

The summability for $S(KG)$ and $U_p(KG)$ in a semisimple aspect are discussed in [1] and [3], respectively. Now we can state

Theorem. Let G be a p-group.

$$S(KG)$$ is σ-summable if and only if G is a direct sum of cyclic groups.

$$U_p(KG)$$ is σ-summable if and only if G is a direct sum of cyclic groups.

Proof. In fact, if G is a direct sum of cyclic groups, then both $S(KG)$ and $U_p(KG)$ are direct sums of cyclics by formula (\circ), since $U_p(K)$ is cyclic (cf. [1]). Thus they are σ-summable. Conversely, if $S(KG)$ or $U_p(KG)$ are σ-summable, then $S(KG)$ is reduced, i.e. its maximal divisible subgroup, equal to $S\omega^c(KG)$ (cf. [1]), is trivial. Hence $S(KG)$ is separable σ-summable, i.e. in other words $S(KG)$ is a direct sum of cyclics, i.e. G is a direct sum of cyclics. The theorem is verified.

References

Department of Algebra, Plovdiv University, Plovdiv 4000, Bulgaria