SMOOTH KUMMER SURFACES
IN PROJECTIVE THREE-SPACE

THOMAS BAUER

(Communicated by Ron Donagi)

ABSTRACT. In this note we prove the existence of smooth Kummer surfaces in projective three-space containing sixteen mutually disjoint smooth rational curves of any given degree.

INTRODUCTION

Let X be a smooth quartic surface in projective three-space \mathbb{P}^3. As a consequence of Nikulin's theorem [6] X is a Kummer surface if and only if it contains sixteen mutually disjoint smooth rational curves. The classical examples of smooth Kummer surfaces in \mathbb{P}^3 are due to Traynard (see [8] and [4]). They were rediscovered by Barth and Nieto [2] and independently by Naruki [5]. These quartic surfaces contain sixteen skew lines. In [1] it was shown by different methods that there also exist smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth conics.

Motivated by these results it is then natural to ask if, for any given integer $d \geq 1$, there exist smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth rational curves of degree d. The aim of this note is to show that the method of [1] can be generalized to answer this question in the affirmative. We show:

Theorem. For any integer $d \geq 1$ there is a three-dimensional family of smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth rational curves of degree d.

We work throughout over the field \mathbb{C} of complex numbers.

1. PRELIMINARIES

Let (A, L) be a polarized abelian surface of type $(1, 2d^2 + 1)$, $d \geq 1$, and let L be symmetric. Denote by e_1, \ldots, e_{16} the halfperiods of A. We are going to consider the non-complete linear system

(*) \[\mathcal{O}_A(2L) \otimes \bigotimes_{i=1}^{16} m_{e_i}^\pm \]

Received by the editors April 6, 1996.

1991 Mathematics Subject Classification. Primary 14J28; Secondary 14E25.

The author was supported by DFG contract Ba 423/7-1.

©1997 American Mathematical Society

2537
of even respectively odd sections of \(\mathcal{O}_A(2L) \) vanishing in \(e_1, \ldots, e_{16} \) to the order \(d \). (As for the sign \(\pm \) we will always use the following convention: we take + if \(d \) is even, and − if \(d \) is odd.) A parameter count shows that the expected dimension of this linear system is 4. In fact, we will show that it yields an embedding of the smooth Kummer surface \(X \) of \(A \) into \(\mathbb{P}_3 \) in the generic case. The linear system \((*)\) corresponds to a line bundle \(M_L \) on \(X \) such that

\[
\pi^* M_L = \mathcal{O}_{\tilde{A}} \left(2\sigma^* L - d \sum_{i=1}^{16} E_i \right)
\]

and

\[
H^0(X, M_L) \cong H^0 \left(A, \mathcal{O}_A(2L) \otimes \bigotimes_{i=1}^{16} m_i^d \right)^{\pm}.
\]

Here \(\sigma : \tilde{A} \to A \) is the blow-up of \(A \) in the halfperiods, \(E_1, \ldots, E_{16} \subset \tilde{A} \) are the exceptional curves and \(\pi : \tilde{A} \to X \) is the canonical projection. The images of \(E_1, \ldots, E_{16} \) under \(\pi \) will be denoted by \(D_1, \ldots, D_{16} \).

We will need the following lemma:

Lemma 1.1. Let the surfaces \(A \) and \(X \) and the line bundles \(L \) and \(M_L \) be as above. Further, let \(C \subset X \) be an irreducible curve, different from \(D_1, \ldots, D_{16} \), and let \(F = \sigma^* \pi^* C \) be the corresponding symmetric curve on \(A \). Then

(a) \(M_L^2 = 4 \) and \(M_L D_i = d \) for \(1 \leq i \leq 16 \),

(b) \(F^2 = 2C^2 + \sum_{i=1}^{16} \text{mult}_{e_i}(F)^2 \), and

(c) \(LF = M_L C + \frac{d}{2} \sum_{i=1}^{16} \text{mult}_{e_i}(F) \).

The proof consists in an obvious calculation.

2. **Bounding degrees and multiplicities**

Here we show two technical statements on the degrees and multiplicities of symmetric curves. We start with a lemma which bounds the degree of a symmetric curve on \(A \) in terms of the degree of the corresponding curve on the smooth Kummer surface of \(A \):

Lemma 2.1. Let \(C \subset X \) be an irreducible curve, different from \(D_1, \ldots, D_{16} \), and let \(F = \sigma^* \pi^* C \) be the corresponding symmetric curve on \(A \). Then

(a) If \(M_L C = 0 \), then \(LF \leq 2 \left(1 - C^2 \right) d^2 + 16 \).

(b) If \(M_L C > 0 \), then \(LF \leq 4 \left(M_L C - \frac{C^2}{M_L C} \right) d^2 + 9M_L C \).

Proof. For \(\gamma \geq 0 \) apply Hodge index to the line bundle \(M_L \) and the divisor \(C + \frac{\gamma}{d} D_i \):

\[
M_L^2 \left(C + \frac{\gamma}{d} D_i \right)^2 \leq \left(M_L C + \frac{\gamma}{d} M_L D_i \right)^2.
\]

Using Lemma 1.1(a) and the equality \(CD_i = \text{mult}_{e_i}(F) \) we get

\[
\text{mult}_{e_i}(F) \leq \left(\frac{(M_L C)^2}{8\gamma} + \frac{\gamma}{8} + \frac{M_L C}{4} - \frac{C^2}{2\gamma} \right) d + \frac{\gamma}{d} ;
\]
hence by Lemma 1.1(c)
\[LF \leq \left(\frac{(MLC)^2 + \gamma + 2MLC - \frac{4C^2}{\gamma}}{\gamma} \right) d^2 + MLC + 8\gamma. \]
Now the assertion follows by setting \(\gamma = 2 \) in case \(MLC = 0 \) and by setting \(\gamma = MLC \) otherwise. \(\square \)

Further, we will need the following inequality on multiplicities of symmetric curves:

Lemma 2.2. Let \(F \subset A \) be a symmetric curve such that \(\mathcal{O}_A(F) \) is of type \((1, e)\) with \(e \) odd. Then
\[\sum_{i=1}^{16} \text{mult}_{e_i}(F)^2 \geq \frac{1}{16} \left(\sum_{i=1}^{16} \text{mult}_{e_i}(F) \right)^2 + \frac{15}{4}. \]

Proof. For \(k \geq 0 \) define the integers \(n_k \) by
\[n_k = \# \{ i \mid m_i = k, \ 1 \leq i \leq 16 \}. \]
Abbreviating \(m_i = \text{mult}_{e_i}(F) \) we then have
\[\sum_{i=1}^{16} m_i = \sum_{k \geq 0} kn_k \quad \text{and} \quad \sum_{i=1}^{16} m_i^2 = \sum_{k \geq 0} k^2 n_k. \]
The polarized abelian surface \((A, \mathcal{O}_A(F))\) is the pull-back of a principally polarized abelian surface \((B, P)\) via an isogeny \(\varphi : A \to B \) of odd degree. The Theta divisor \(\Theta \in |P| \) passes through six halfperiods with multiplicity one and through ten halfperiods with even multiplicity. Therefore the symmetric divisor \(F \in |\varphi^*P| \) is of odd multiplicity in six halfperiods and of even multiplicity in ten halfperiods or vice versa. So we have
\[\sum_{k \equiv 0(2)} n_k = a \quad \text{and} \quad \sum_{k \equiv 1(2)} n_k = b, \]
where \((a, b) = (6, 10)\) or \((a, b) = (10, 6)\).
Under the restriction (1) the difference
\[\sum k^2 n_k - \frac{1}{16} \left(\sum kn_k \right)^2 \]
is minimal, if for some integer \(k_0 \geq 0 \) we have
\[n_{k_0} = 10, \ n_{k_0+1} = 6 \quad \text{or} \quad n_{k_0} = 6, \ n_{k_0+1} = 10. \]
In this case we get
\[\sum k^2 n_k - \frac{1}{16} \left(\sum kn_k \right)^2 = \frac{15}{4}, \]
which implies the assertion of the lemma. \(\square \)

3. Kummer surfaces with sixteen skew rational curves of given degree

The aim of this section is to show:

Theorem 3.1. Let \((A, L)\) be a polarized abelian surface of type \((1, 2d^2 + 1)\), \(d \geq 1 \). Assume \(\rho(A) = 1 \). Then the map \(\varphi_{ML} : X \to \mathbb{P}^3 \) defined by the linear system \(|ML|\) is an embedding. The image surface \(\varphi_{ML}(X) \) is a smooth quartic surface containing sixteen mutually disjoint smooth rational curves of degree \(d \).

In particular, this implies the theorem stated in the introduction.
Proof. Using Riemann-Roch, Kodaira vanishing and Lemma 1.1(a), we will be done as soon as we can show that M_L is very ample. For $d = 1$ this follows from [3], whereas for $d = 2$ it follows from [1]. So we may assume $d \geq 3$ in the sequel.

(a) First we show that M_L is globally generated. A possible base part B of the system $\left| O_A (2L) \otimes \bigotimes_{i=1}^{16} m_i^d \right|$ is totally symmetric, so B is algebraically equivalent to some even multiple of L, which is impossible for dimensional reasons. It remains the possibility that one – hence all – of the curves D_i is fixed in $|M_L|$. So $M_L - \mu \sum D_i$ is free for some $\mu \geq 1$. But $(M_L - \mu \sum D_i)^2 = 4 - 32\mu d - 32\mu^2 < 0$, a contradiction.

(b) Our next claim is that M_L is ample. Otherwise there is an irreducible (-2)-curve $C \subset X$ such that $M_L C = 0$. Lemma 1.1 shows that we have

$$LF = \frac{d}{2} \sum m_i \quad \text{and} \quad F^2 = -4 + \sum m_i^2$$

for the symmetric curve $F = \sigma_* \pi^* C$ with multiplicities $m_i = \text{mult}_{e_i}(F)$. According to Lemma 2.1 the degree of F is bounded by

$$LF \leq 6d^2 + 16.$$

Since L is a primitive line bundle, the assumption on the Néron-Severi group of A implies that $O_A (F)$ is algebraically equivalent to some multiple pL, $p \geq 1$, thus we have $LF = pL^2 = p(4d^2 + 2)$, and then (2) implies $p = 1$ because of our assumption $d \geq 3$. So we find

$$8d^2 + 4 = 2LF = d \sum m_i$$

and reduction mod d shows that necessarily $d = 4$. But in this case $\sum m_i$ would be odd, which is impossible (cf. [3]).

(c) Finally we prove that M_L is very ample. Suppose the contrary. Saint-Donat’s criterion [7, Theorem 5.2 and Theorem 6.1(iii)] then implies the existence of an irreducible curve $C \subset X$ with $M_L C = 2$ and $C^2 = 0$. So we have

$$LF = 2 + \frac{d}{2} \sum m_i \quad \text{and} \quad F^2 = \sum m_i^2$$

for the corresponding symmetric curve $F = \sigma_* \pi^* C$. Lemma 2.1 yields the estimate

$$LF \leq 8d^2 + 18.$$

As above $O_A (F)$ is algebraically equivalent to some multiple pL, $p \geq 1$, hence we get

$$p \left(4d^2 + 2 \right) = pL^2 \leq 8d^2 + 18,$$

which implies $p \leq 2$. If we had $p = 2$ then reduction mod d of the equation

$$2 \left(4d^2 + 2 \right) = 2 + \frac{d}{2} \sum m_i$$

would give $d = 4$. But in this case we have $\sum m_i = 65$, which is impossible.

So the only remaining possibility is $p = 1$, thus

$$4d^2 + 2 = 2 + \frac{d}{2} \sum m_i = \sum m_i^2.$$

But a numerical check shows that this contradicts Lemma 2.2. This completes the proof of the theorem.
Remark 3.2. We conclude with a remark on the genericity assumption on the abelian surface A. It is certainly not true that the line bundle M_L is very ample for every polarized abelian surface (A, L) of type $(1, 2d^2 + 1)$. Consider for instance the case where $A = E_1 \times E_2$ is a product of elliptic curves and $L = O_A \left(\{0\} \times E_2 + (2d^2 + 1) E_1 \times \{0\} \right)$. Here, taking $C \subset X$ to be curve corresponding to $E_1 \times \{0\}$, we have

$$M_L C = 1 - 2d < 0,$$

so in this case M_L is not even ample or globally generated.

REFERENCES

2. Barth, W., Nieto, I.: Abelian surfaces of type $(1, 3)$ and quartic surfaces with 16 skew lines. J. Algebraic Geometry 3, 173-222 (1994) MR 95e:14033