Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Smooth Kummer surfaces
in projective three-space

Author: Thomas Bauer
Journal: Proc. Amer. Math. Soc. 125 (1997), 2537-2541
MSC (1991): Primary 14J28; Secondary 14E25
MathSciNet review: 1422846
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove the existence of smooth Kummer surfaces in projective three-space containing sixteen mutually disjoint smooth rational curves of any given degree.

References [Enhancements On Off] (What's this?)

  • 1. Barth, W., Bauer, Th.: Smooth quartic surfaces with 352 conics. Manuscripta Math. 85, 409-417 (1994) MR 95j:14045
  • 2. Barth, W., Nieto, I.: Abelian surfaces of type $\left (1,3\right )$ and quartic surfaces with 16 skew lines. J. Algebraic Geometry 3, 173-222 (1994)MR 95e:14033
  • 3. Bauer, Th.: Projective images of Kummer surfaces. Math. Ann. 299, 155-170 (1994) MR 95c:14040
  • 4. Godeaux, L.: Sur la surface du quatrième ordre contenant trente-deux droites. Académie Royale de Belgique, Bulletin de la Classe des Sciences, 5. sér., 25, 539-552 (1939) MR 4:253e
  • 5. Naruki, I.: On smooth quartic embedding of Kummer surfaces. Proc. Japan Acad. 67, Ser. A, 223-225 (1991) MR 93b:14064
  • 6. Nikulin, V.V.: On Kummer surfaces. Math. USSR Izvestija, Vol.9, No.2, 261-275 (1975)
  • 7. Saint-Donat, B.: Projective models of K3 surfaces. Amer. J. Math. 96, 602-639 (1974) MR 51:518
  • 8. Traynard, E.: Sur les fonctions thêta de deux variables et les surfaces hyperelliptiques. Ann. Scient. Éc. Norm. Sup., 3. sér., t. 24, 77-177 (1907)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14J28, 14E25

Retrieve articles in all journals with MSC (1991): 14J28, 14E25

Additional Information

Thomas Bauer
Affiliation: Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstrasse 1$\tfrac12$, D-91054 Erlangen, Germany
Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90024

Received by editor(s): April 6, 1996
Additional Notes: The author was supported by DFG contract Ba 423/7-1.
Communicated by: Ron Donagi
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society