CONSTRUCTION OF ANR TOPOLOGIES
ON CERTAIN GROUPS

BERND GÜNTEGER

(Communicated by Thomas Goodwillie)

Abstract. A method is shown to construct ANR-topologies on topological
groups of suitable homotopy type.

It is well known that every simple countable CW-complex with vanishing Post-
nikov invariants has the homotopy type of a topological Abelian group G, that
can be taken as realization of a countable simplicial Abelian group and hence is
a countable CW-complex [5, Ch.V]. In particular this means that the homotopy
groups $\pi_n(G)$ can be chosen as an arbitrarily prescribed sequence of countable
Abelian groups. However, there are situations where it would be preferable to have
G as an ANR-space instead of a CW-complex. One would guess that a suitable
topology exists on G, because by subdivision it can be turned into a polyhedron and
then can get the metric topology, but the subdivision process necessarily leaves the
range of simplicial Abelian groups and need not produce a group topology. Instead,
we follow a method developed by Cauty in [1].

Theorem. Let G be a locally contractible, not necessarily Abelian group, every
open subset of which is σ-compact, such that G is the union of a sequence of finite
dimensional compact metric spaces and has the homotopy type of a CW-complex.
Then G carries a metrizable group topology, coarser than the original one but of
the same homotopy type, which turns G into an ANR-space.

All these requirements are satisfied, for instance, if G itself is a countable CW-
complex.

Proof. We construct a decreasing sequence of open neighborhoods V_n of the identity
$1 \in G$ such that

1. $\bigcap_{n=1}^{\infty} V_n = \{1\}$,
2. the inclusion map $V_{n+1} \hookrightarrow V_n$ is null homotopic,
3. if $H_m : V_{m+1} \times I \to V_m$ is the null homotopy from 2, then for any $g \in V_{m+1}$
 and each $n \geq m$ there exist $N \geq n$ and $\varepsilon > 0$ such that $g' \in gV_N$, $|t' - t| <
 \varepsilon \Rightarrow H_m(g', t') \in H_m(g, t)V_n$,
4. $V_n^{-1} = V_n$ and $V_n V_{n+1} \subseteq V_n$,
5. for each n and every $g \in G$ there exists $N \geq n$ with $g^{-1}V_N g \subseteq V_n$.

Received by the editors April 1, 1996.
1991 Mathematics Subject Classification. Primary 54H11, 54C55, 22A05.
Key words and phrases. Homotopy type of topological groups, ANR-spaces, CW-complexes.

©1997 American Mathematical Society
All of these properties are immediately clear with the exception of 3 and 5. We construct V_n inductively. Let U_n be a sequence of neighborhoods of the identity with $\cap_{n=1}^{\infty} U_n = \{1\}$; it exists because the open set $G \setminus \{1\}$ is σ-compact and therefore $\{1\}$ is a G_δ. Choose V_1 with $V_1 = V_1^{-1} \subseteq U_1$, otherwise arbitrarily. Now suppose that V_1, \ldots, V_n are already constructed such that $2, 4, V_k \subseteq U_k$ and the following properties hold:

3a. For $k < m \leq n$ there exist a sequence of neighborhoods of the identity $\{W_i^{km} \mid i \in \mathbb{N}\}$ and a sequence of numbers $\varepsilon_i^{km} > 0$ such that for each $g \in V_{k+1}$ there exists i with $g' \in gW_i^{km}$, $|t' - t| < \varepsilon_i^{km} \Rightarrow H_k(g', t') \in H_k(g, t)V_m$.

3b. $V_n \subseteq \bigcap_{k \leq m < n, i \leq n} W_i^{km}$.

5a. For every $g \in K_n$ we have $g^{-1}V_{n+1}g \subseteq V_n$, where K_m is an increasing sequence of compacta covering G.

To pass from n to $n+1$ choose V_{n+1} subject to conditions 2, 3b, 4, 5a and $V_{n+1} \subseteq V_n \cap U_{n+1}$. It now remains to construct the neighborhoods $W_i^{k,n+1}$ for $k \leq n$. By assumption we can find a sequence of compact sets $C_i \subseteq V_{k+1}$ with $\bigcup_{i=1}^{\infty} C_i = V_{k+1}$. For each of them we choose a neighborhood of the identity $W_i^{k,n+1}$ with $C_iW_i^{k,n+1} \subseteq V_{k+1}$ and a number $\varepsilon_i^{k,n+1} > 0$ such that $g \in C_i$, $g' \in gW_i^{k,n+1}$ and $|t' - t| < \varepsilon_i^{k,n+1}$ implies $H_k(g', t') \in H_k(g, t)V_m$. It is clear that the whole sequence of neighborhoods V_n satisfies 1–5 and hence defines a metrizable group topology on G, which is coarser than the original topology. Denote by \tilde{G} the group G topologized by our neighborhood system V_n. 3 ensures that the homotopies H_n are continuous with respect to our metrizable topology, and hence that \tilde{G} is locally contractible. It now follows from [3] that \tilde{G} is an ANR-space and from [4, Theorem 1] that the identity map $G \to \tilde{G}$ is a homotopy equivalence.

In a similar way it can be proved that the construction is “almost” functorial in the sense that for any family of continuous homomorphisms $f_\lambda : G_\lambda \to H_\lambda$ between groups satisfying the assumptions of our theorem, such that each group appears at most countably often among the source groups G_λ the ANR group topology can be chosen in such a way that all homomorphisms $f_\lambda : G_\lambda \to H_\lambda$ are continuous. The countability assumption seems to be essential.

References