ON THE PRODUCT PROPERTY
OF THE PLURICOMPLEX GREEN FUNCTION

ARMEN EDIGARIAN

(Communicated by Eric Bedford)

Abstract. We prove that the pluricomplex Green function has the product property $g_{D_1 \times D_2} = \max\{g_{D_1}, g_{D_2}\}$ for any domains $D_1 \subset \mathbb{C}^n$ and $D_2 \subset \mathbb{C}^m$.

Let E denote the unit disc in \mathbb{C}. For any domain $G \subset \mathbb{C}^n$ define

$$g_D(a, z) := \inf_{\varphi \in \mathcal{O}(E, D), \varphi(0) = z} \left\{ \prod_{\lambda \in \varphi^{-1}(a)} |\lambda|^{\text{ord}_\lambda(\varphi - a)} \right\}, \quad a, z \in D,$$

where $\mathcal{O}(E, D)$ denotes the set of all holomorphic mappings $E \to D$ and $\text{ord}_\lambda(\varphi - a)$ denotes multiplicity of $\varphi - a$ at λ.

The function g_D is proposed by Poletsky (cf. [Pol]) and is called the pluricomplex Green function for D. We have that (see [Jar-Pfl1], Chapter IV)

$$(a) \quad g_D(a, z) = \inf_{\varphi \in \mathcal{O}(E, D), \varphi(0) = z} \left\{ \prod_{\lambda \in \varphi^{-1}(a)} |\lambda|^{\text{ord}_\lambda(\varphi - a)} \right\}, \quad a, z \in D.$$

Note that in the formula (a) we take only $\lambda \in \varphi^{-1}(a)$ such that $\lambda \in E$.

(b) For any domains D_1, D_2 and any holomorphic mapping $f : D_1 \to D_2$ we have the following contractible property: $g_{D_2}(f(z), f(w)) \leq g_{D_1}(z, w), \quad z, w \in D_1$.

The main result of the paper is the following product property.

Theorem. Let $D_1 \subset \mathbb{C}^n$ and $D_2 \subset \mathbb{C}^m$ be domains. Then

$$g_{D_1 \times D_2}((z_1, w_1), (z_2, w_2)) = \max\{g_{D_1}(z_1, z_2), g_{D_2}(w_1, w_2)\},$$

$$(z_1, w_1), (z_2, w_2) \in D_1 \times D_2.$$

Remark. The product property for $D_1 \times D_2$ for the pluricomplex Green function in the case when D_1 or D_2 is pseudoconvex was proved in [Jar-Pfl2]. Note that in [Jar-Pfl2] the authors used the description of the pluricomplex Green function given by M. Klimek.

Proof. The inequality “\geq” follows from the property (b). So, we have to prove “\leq”.

Received by the editors February 19, 1996.

1991 Mathematics Subject Classification. Primary 32F05, 31C10.
Let \((a_1, b_1), (a_2, b_2) \in D_1 \times D_2\). If \(a_1 = a_2\) or \(b_1 = b_2\), then the required inequality follows from the property (b). So, we may assume that \(a_1 \neq a_2\) and \(b_1 \neq b_2\).

Suppose that \(N \in (0, 1)\) is such that

\[
\max\{g_{D_1}(a_1, a_2), g_{D_2}(b_1, b_2)\} < N.
\]

It is sufficient to prove that

\[
g_{D_1 \times D_2}\left((a_1, b_1), (a_2, b_2)\right) < N.
\]

There are holomorphic mappings \(\varphi_1 : \tilde{E} \to D_1\) and \(\varphi_2 : \tilde{E} \to D_2\) such that \(\varphi_1(0) = a_2, \varphi_2(0) = b_2\),

\[
\prod_{\lambda \in \varphi_1^{-1}(a_1)} |\lambda|^{\ord_{\lambda}(\varphi_1 - a_1)} < N \quad \text{and} \quad \prod_{\lambda \in \varphi_2^{-1}(b_1)} |\lambda|^{\ord_{\lambda}(\varphi_2 - b_1)} < N.
\]

Note that \(\nu := \#(\varphi_1^{-1}(a_1) \cap E) < \infty\) and \(\mu := \#(\varphi_2^{-1}(b_1) \cap E) < \infty\). We may assume that \(\varphi_1\) and \(\varphi_2\) are such that \(\nu\) and \(\mu\) are minimal.

Let \(\varphi_1^{-1}(a_1) \cap E = \{\zeta_1, \ldots, \zeta_\nu\}\) and \(\varphi_2^{-1}(b_1) \cap E = \{\xi_1, \ldots, \xi_\mu\}\), where each point counts with its multiplicity.\(^1\) Since \(\varphi_1(E) \subset D_1\) and \(\varphi_2(E) \subset D_2\), we may assume that \(|\zeta_1| < |\zeta_2| < \cdots < |\zeta_{\nu}|\) and \(|\xi_1| < |\xi_2| < \cdots < |\xi_{\mu}|\), i.e. each point \(\zeta_j\) and \(\xi_j\) is with multiplicity one.\(^2\) Then

\[
|\zeta_1 \cdots \zeta_{\nu}| \geq N|\zeta_{\nu}|^\nu \quad \text{and} \quad |\xi_1 \cdots \xi_{\mu}| \geq N|\xi_{\mu}|^\mu.
\]

For, if \(|\zeta_1 \cdots \zeta_{\nu}| < N|\zeta_{\nu}|^\nu\), then we may consider the mapping \(\varphi_1(\zeta, \lambda)\), and it contradicts the minimality of \(\nu\).

If \(|\zeta_1 \cdots \zeta_{\nu}| < |\xi_1 \cdots \xi_{\mu}|\), then we replace \(\varphi_1\) with the mapping \(\tilde{\varphi}_1(\lambda) = \varphi_1(t\lambda)\), where \(t := \left(\frac{|\zeta_1 \cdots \zeta_{\nu}|}{|\xi_1 \cdots \xi_{\mu}|}\right)^{\frac{1}{\nu}}\). Then \(t\zeta_j < 1, j = 1, \ldots, \nu\) (use (2)), and

\[
\left|\left(\frac{\zeta_1}{t}\right) \cdots \left(\frac{\zeta_{\nu}}{t}\right)\right| = |\zeta_1 \cdots \zeta_{\nu}|.
\]

Hence, we may assume that

\[
|\zeta_1 \cdots \zeta_{\nu}| = |\zeta_1 \cdots \zeta_{\nu}| = C < N.
\]

Moreover, replacing \(\varphi_1(\lambda)\) with \(e^{-i\theta_1}\lambda\) and \(\varphi_2(\lambda)\) with \(e^{-i\theta_2}\lambda\), where \(\theta_1, \theta_2\) are chosen such that \(e^{i\theta_1}\zeta_1 \cdots e^{i\theta_1}\zeta_{\nu} = C\) and \(e^{i\theta_2}\xi_1 \cdots e^{i\theta_2}\xi_{\mu} = C\), we may assume that

\[
\zeta_1 \cdots \zeta_{\nu} = \xi_1 \cdots \xi_{\mu} = C.
\]

We consider Blaschke products

\[
B_1(\lambda) := \prod_{j=1}^{\nu} \frac{\zeta_j - \lambda}{1 - \zeta_j \lambda}
\]

and

\[
\tilde{B}_1(\lambda) = \frac{B_1(\lambda) - B_1(0)}{1 - B_1(0)B_1(\lambda)} = e^{i\theta} \prod_{j=1}^{\nu} \frac{\lambda - w_j}{1 - w_j \lambda}, \quad \lambda \in \tilde{E}.
\]

\(^1\)Note that mappings \(\varphi_1\) and \(\varphi_2\) are holomorphic in some neighborhood of \(\overline{E}\), and the sets \(\varphi_1^{-1}(a_1)\) and \(\varphi_2^{-1}(b_1)\) may contain points outside of \(E\).

\(^2\)For example, it is enough to change very little the mappings \(\varphi_1\) and \(\varphi_2\) by the formula (3) given below.
We choose different \(w'_j, 1 \leq j \leq \nu \), as close to \(w_j \) as we want such that \(0 \in \{w'_1, \ldots, w'_\nu\} \). Define

\[
G_1(\lambda) = e^{i \theta} \prod_{j=1}^{\nu} \frac{\lambda - w'_j}{1 - w'_j \lambda}.
\]

Note that \(B_1^{-1}(-C) = \{\zeta_1, \ldots, \zeta_\nu\} \). We can find \(w'_1, \ldots, w'_\nu \) such that \(G_1^{-1}(-C) \) consists of \(\nu \) different points \(\zeta'_j, 1 \leq j \leq \nu \), as close to points \(\zeta_j \) as we want. Let us replace the mapping \(\varphi_1 \) with the mapping

\[
\tilde{\varphi}_1(\lambda) := (\varphi(\lambda) - a_1) \prod_{j=1}^{\nu} \frac{\zeta_j(\lambda - \zeta'_j)}{\zeta'_j(\lambda - \zeta_j)} + a_1.
\]

Clearly, when \(\zeta'_j, 1 \leq j \leq \nu \), are sufficiently close to \(\zeta_j \), \(\tilde{\varphi}_1 \) maps \(E \) into \(D_1 \) (recall that \(\varphi_1 \) maps some neighborhood of \(E \) into \(D_1 \), hence \(\varphi_1(E) \subseteq D_1 \), and \(\tilde{\varphi}_1(0) = \varphi_1(0), \tilde{\varphi}_1(\zeta'_j) = \varphi_1(\zeta_j) \).

Repeating this process for \(\varphi_2 \), we may assume that for Blaschke products \(B_1 \) and \(B_2 \) derivatives are not equal to 0 either on preimages of \(C \) or at points \(\zeta_j \) or \(\xi_j \) respectively.

Let \(A \) be the union of images of singular points under mappings \(B_1 \) and \(B_2 \). Note that neither 0 nor \(C \) is in \(A \). Let \(\pi \) be a holomorphic universal covering of \(E \setminus A \) by \(E \) with \(\pi(0) = C \). There are liftings \(\psi_1 \) and \(\psi_2 \) mapping \(E \) into \(E \) such that \(\pi = B_1 \circ \psi_1 = B_2 \circ \psi_2 \) and \(\psi_1(0) = \psi_2(0) = 0 \). If \(\pi^{-1}(0) = \{\eta_1, \eta_2, \ldots\} \), then mappings \(\varphi_1 \circ \psi_1 \) and \(\varphi_2 \circ \psi_2 \) map 0 into \(a_2 \) and \(b_2 \), and all points \(\eta_j \) into \(a_1 \) and \(b_1 \) respectively.

Note that \(\pi \) has all radial limits either in \(\partial E \) or in \(A \). Since \(A \) is finite, \(\pi \) is an inner function. By Theorem 2 of Ch. III in [Nos], every inner function which has no zero radial limits is a Blaschke product. Thus

\[
\pi(\lambda) = e^{i \alpha} \prod_{j=1}^{\infty} \frac{\bar{\eta}_j - \lambda}{|\eta_j| - \bar{\eta}_j \lambda}
\]

and

\[
\prod_{j=1}^{\infty} |\eta_j| = \pi(0) = C < N.
\]

Since \((\varphi_1 \circ \psi_1, \varphi_2 \circ \psi_2) \) maps \(E \) into \(D_1 \times D_2 \),

\[
g_{D_1 \times D_2}((a_1, b_1), (a_2, b_2)) \leq \prod_{j=1}^{\infty} |\eta_j| < N.
\]

\[\square\]

Acknowledgement

I am very grateful to Professors M. Jarnicki, P. Pflug, and W. Zwonek for helpful discussions and remarks. I also would like to thank the referee, who turned my attention to the book [Nos] and whose suggestions improved this paper.
REFERENCES

Instytut Matematyki, Uniwersytet Jagielloński, Reymonta 4, 30-059 Kraków, Poland
E-mail address: edigaria@im.uj.edu.pl